11/2a+3=8/3a-4

Simple and best practice solution for 11/2a+3=8/3a-4 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 11/2a+3=8/3a-4 equation:



11/2a+3=8/3a-4
We move all terms to the left:
11/2a+3-(8/3a-4)=0
Domain of the equation: 2a!=0
a!=0/2
a!=0
a∈R
Domain of the equation: 3a-4)!=0
a∈R
We get rid of parentheses
11/2a-8/3a+4+3=0
We calculate fractions
33a/6a^2+(-16a)/6a^2+4+3=0
We add all the numbers together, and all the variables
33a/6a^2+(-16a)/6a^2+7=0
We multiply all the terms by the denominator
33a+(-16a)+7*6a^2=0
Wy multiply elements
42a^2+33a+(-16a)=0
We get rid of parentheses
42a^2+33a-16a=0
We add all the numbers together, and all the variables
42a^2+17a=0
a = 42; b = 17; c = 0;
Δ = b2-4ac
Δ = 172-4·42·0
Δ = 289
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{289}=17$
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(17)-17}{2*42}=\frac{-34}{84} =-17/42 $
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(17)+17}{2*42}=\frac{0}{84} =0 $

See similar equations:

| 3.p/3=5.3 | | 1/5x3-14=1 | | 3(4s+10=42 | | 6(4s+2)=204 | | 3/4(8x –6)–2= 12 – x | | 6n-7=2n+5 | | 1/2-4x=4/5+3x | | 17-x=⅓x15+6 | | 6+5x-3-x=8 | | 3n-5=17+8n | | 1/a+2=3/a+3 | | 3z/8+2=-8 | | k^2+1-4k(k+1)^2-3(k+1)^2=0 | | 2.8-2.3y=-2.2 | | 24-(5+x)=-6x+3 | | 6/x-2+2/x+2=8/(x-2)(x+2) | | -x+-1=x-21 | | x 4=2 | | 14z+28=56 | | 3(x-2)=4(2x+8) | | -5(4+3x)=2(-x+3) | | -10x+50=70 | | 2(5x-1)-8x=-(-2x-10) | | 1/a-3+1/a+3=2/(a-3)(a+3) | | -15x-4+6x=-4-9× | | 6(-6-5x)=84 | | q-9=2 | | 14z+-50=70 | | 4 x=2 | | 2/x+3+2/x-3=20/(x+3)(x-3) | | 12/2=42/x | | 5-12x=-18 |

Equations solver categories