11/5b+2=3/5b+10b=

Simple and best practice solution for 11/5b+2=3/5b+10b= equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 11/5b+2=3/5b+10b= equation:



11/5b+2=3/5b+10b=
We move all terms to the left:
11/5b+2-(3/5b+10b)=0
Domain of the equation: 5b!=0
b!=0/5
b!=0
b∈R
Domain of the equation: 5b+10b)!=0
b∈R
We add all the numbers together, and all the variables
11/5b-(+10b+3/5b)+2=0
We get rid of parentheses
11/5b-10b-3/5b+2=0
We multiply all the terms by the denominator
-10b*5b+2*5b+11-3=0
We add all the numbers together, and all the variables
-10b*5b+2*5b+8=0
Wy multiply elements
-50b^2+10b+8=0
a = -50; b = 10; c = +8;
Δ = b2-4ac
Δ = 102-4·(-50)·8
Δ = 1700
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1700}=\sqrt{100*17}=\sqrt{100}*\sqrt{17}=10\sqrt{17}$
$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-10\sqrt{17}}{2*-50}=\frac{-10-10\sqrt{17}}{-100} $
$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+10\sqrt{17}}{2*-50}=\frac{-10+10\sqrt{17}}{-100} $

See similar equations:

| 1-y/2=1 | | 6x=6x+18 | | 2.20+x=-3.5 | | -7=3+w | | 29=1/2(10x-8)+2/3(6x+9) | | (5^(2x))*(3^x)=15^(3x) | | 2x+7=-4x+19 | | 9+x=-87 | | (a​2​​)​3​​=​​ | | x+x.0625=4196 | | -2(3x-5)+4(x-6)=-26 | | 104=-8(7x-6) | | (−8x−12)+(9x+4)= | | 120=-3(4x-8) | | 6y+7=9y-4 | | (-9x+12)+(-5x+14)=0 | | 3y+350X=185 | | −1/5x=6 | | 3x^2-35=-8x | | H=-4.9x^2-2x+22 | | 15t-5=-36 | | ((2b)/3)+(11/4)=3-((11b)/6) | | -2=-2(x-4) | | 6x2-44=0 | | 8v-40=-3(4-5v) | | 4(a+3)-7=6a+21 | | 2.4*x=4 | | x+28=28,x= | | 2^2x-2=2^6 | | 2(x+6)-3x+24=4(x+1)+2 | | 3+4x=5+1x | | 4+5x=31 |

Equations solver categories