11/5x*7+x=470

Simple and best practice solution for 11/5x*7+x=470 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 11/5x*7+x=470 equation:



11/5x*7+x=470
We move all terms to the left:
11/5x*7+x-(470)=0
Domain of the equation: 5x*7!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
x+11/5x*7-470=0
We multiply all the terms by the denominator
x*5x*7-470*5x*7+11=0
Wy multiply elements
35x^2*7-16450x*7+11=0
Wy multiply elements
245x^2-115150x+11=0
a = 245; b = -115150; c = +11;
Δ = b2-4ac
Δ = -1151502-4·245·11
Δ = 13259511720
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{13259511720}=\sqrt{1764*7516730}=\sqrt{1764}*\sqrt{7516730}=42\sqrt{7516730}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-115150)-42\sqrt{7516730}}{2*245}=\frac{115150-42\sqrt{7516730}}{490} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-115150)+42\sqrt{7516730}}{2*245}=\frac{115150+42\sqrt{7516730}}{490} $

See similar equations:

| 7x+27=10x-6 | | 5(3x+8)=2(7x-) | | y/9+5=-15 | | n2=25/64 | | 15/2=x-3/2 | | 82+13s=550 | | 100q-86=104q-162 | | -w+4+6w=1+5w+3 | | 15=(1/2)+(3/2x)+10 | | 5(2f+3)=10f+15 | | -462=-7(2-8x) | | 1925+145.5x=3525.5 | | 11y-9-7+22y=12y+9y+8 | | 4(6+x)+6+x=126 | | 15=(1/2)+(3/2)x+10 | | x+3-3x=350 | | X+11/5x*7=470 | | 28c-54=226 | | 6(x-1)-4x=2(3x-5) | | x^2-x-18=9x+6 | | (6,8);m=4 | | 6=b÷4+2 | | 4.12+q=9.912 | | -6×(4x+1)+7x+9×(x-3)=4 | | 0=6r^2-7r-5 | | 17.50x+100+220=1020 | | 3x+14=x-10 | | x+3-3x=7 | | 16t^2+32t-147=0 | | 11y-9-7+22y=12y=9y=8 | | 34-7x=15+34 | | b-(-29)=41 |

Equations solver categories