11/8(2y)+2y=190

Simple and best practice solution for 11/8(2y)+2y=190 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 11/8(2y)+2y=190 equation:



11/8(2y)+2y=190
We move all terms to the left:
11/8(2y)+2y-(190)=0
Domain of the equation: 82y!=0
y!=0/82
y!=0
y∈R
We add all the numbers together, and all the variables
2y+11/82y-190=0
We multiply all the terms by the denominator
2y*82y-190*82y+11=0
Wy multiply elements
164y^2-15580y+11=0
a = 164; b = -15580; c = +11;
Δ = b2-4ac
Δ = -155802-4·164·11
Δ = 242729184
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{242729184}=\sqrt{16*15170574}=\sqrt{16}*\sqrt{15170574}=4\sqrt{15170574}$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-15580)-4\sqrt{15170574}}{2*164}=\frac{15580-4\sqrt{15170574}}{328} $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-15580)+4\sqrt{15170574}}{2*164}=\frac{15580+4\sqrt{15170574}}{328} $

See similar equations:

| 9x+3=6x+51 | | 10000x+1=x+2 | | T(d)=35(3.5)+20 | | 8n+8n-48=-160 | | 5=5/0x+1 | | 5+4(x+1)=2x+9 | | f/27=14/9 | | 3(x+1=5+x | | 7(a+7)+3=94 | | 0.4(x+2)=0.6(3x+6( | | 5+4x+4=2x+9 | | y-(-3)=5 | | 3k+2=4(k-6)+3 | | 1/9y+6=-8 | | x+4x+10=120 | | p-3=2(p-62) | | 96+x=82+x | | 5(y+2)3y=8y+10 | | x–1=5 | | 24+3m=14m-4 | | -3-4n+3n=13+2n-2-3 | | x–1=5=x=6 | | -40+7b=4-5(5b-4) | | 7x+6=5x+22 | | (Y/5)+4=(y/3) | | b-3=b(23) | | 7n^2-15n=0 | | 31-9c=5(c-5) | | 2+22=-3(6x-8) | | X-1-(2-x)/2+x=0 | | 6(p+5)-3((p-2)=12p+18 | | 5n^2-1.54n+6=142 |

Equations solver categories