110-(6x+15)=6x(x+5)+x

Simple and best practice solution for 110-(6x+15)=6x(x+5)+x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 110-(6x+15)=6x(x+5)+x equation:



110-(6x+15)=6x(x+5)+x
We move all terms to the left:
110-(6x+15)-(6x(x+5)+x)=0
We get rid of parentheses
-6x-(6x(x+5)+x)-15+110=0
We calculate terms in parentheses: -(6x(x+5)+x), so:
6x(x+5)+x
We add all the numbers together, and all the variables
x+6x(x+5)
We multiply parentheses
6x^2+x+30x
We add all the numbers together, and all the variables
6x^2+31x
Back to the equation:
-(6x^2+31x)
We add all the numbers together, and all the variables
-6x-(6x^2+31x)+95=0
We get rid of parentheses
-6x^2-6x-31x+95=0
We add all the numbers together, and all the variables
-6x^2-37x+95=0
a = -6; b = -37; c = +95;
Δ = b2-4ac
Δ = -372-4·(-6)·95
Δ = 3649
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-37)-\sqrt{3649}}{2*-6}=\frac{37-\sqrt{3649}}{-12} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-37)+\sqrt{3649}}{2*-6}=\frac{37+\sqrt{3649}}{-12} $

See similar equations:

| 7w+5=84 | | x/8=1.55+x | | (2x/3)-(x/5)=7 | | 3÷5=2÷3t | | 48+3x=3x | | 2^-m=64 | | 12/x=16/20 | | 4(2x+5x)=3(5x-2) | | 2y(y+3)=-17 | | 8(4z+5)+2=74 | | (A+6)(3a-7=0 | | 15b+6-b=4b+36 | | 5(9i+7)-9=116 | | 4x-33=-1 | | 6x+27/2=6 | | (x/3.9)3=(0.08/9) | | 6(4r-7)+2=164 | | 10(4j-7)+9=23939 | | 5b-5+7=6b+1 | | x+0.5*x=975 | | -16x^2+128x=220 | | 12i+7=5 | | 5b | | -(5-y)=2/3(y+4) | | 5(x+2)=1+x/2 | | 5b | | 8(-k-8)=20+6k | | 5=10(5x-9)-5 | | 6(5k+1)+1=127 | | b-3/b+9=4/10 | | 17x+13Y=5 | | 11=5(3b-4)+1 |

Equations solver categories