If it's not what You are looking for type in the equation solver your own equation and let us solve it.
11040*2=n(1200+40n-40)
We move all terms to the left:
11040*2-(n(1200+40n-40))=0
We add all the numbers together, and all the variables
-(n(40n+1160))+11040*2=0
We add all the numbers together, and all the variables
-(n(40n+1160))+22080=0
We calculate terms in parentheses: -(n(40n+1160)), so:We get rid of parentheses
n(40n+1160)
We multiply parentheses
40n^2+1160n
Back to the equation:
-(40n^2+1160n)
-40n^2-1160n+22080=0
a = -40; b = -1160; c = +22080;
Δ = b2-4ac
Δ = -11602-4·(-40)·22080
Δ = 4878400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4878400}=\sqrt{1600*3049}=\sqrt{1600}*\sqrt{3049}=40\sqrt{3049}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1160)-40\sqrt{3049}}{2*-40}=\frac{1160-40\sqrt{3049}}{-80} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1160)+40\sqrt{3049}}{2*-40}=\frac{1160+40\sqrt{3049}}{-80} $
| 7y+2y=30+-6 | | 4(t-1)=3(2t+1) | | 40n^2+1160n-22080=0 | | n^2+29n-552=0 | | -4(8-5m)=13 | | 2(x+1)-1=3-(1-2x) | | 2x^+7x=30 | | 2x^+7x=-30 | | 20-2n+4=14 | | (x+2)^4+5(x+2)^2-36=0 | | 6b+8b=3b-b | | X÷3=2+x÷2 | | 2x-6+x+10=180 | | 12x-8x-3+16x=9x+29-5x | | (X-1)/(x-2)-(x-2)/(x-1)=0 | | 12-8x-3+16=9x+29-5x | | 500n2+1500n-11000=0 | | 12x+52=109-7x | | (2x+1)/(3x-2)=0 | | 100n2+900n-18800=0 | | n2+9n-188=0 | | (2x-5)(3x+7)-2x+5=0 | | 3(0)-8y=18 | | (22)x=64 | | (2x2)x=64 | | 1/22.4=x/1 | | 5(3y+12)=(5y+20) | | 5(3y+12)=(5y+20 | | 2x+3=2.2x | | 3x+7-4x+3=-1x+10 | | |4b-5}=19 | | 3x+170=180 |