110x*x+30*x/2+80*0,25x=26100

Simple and best practice solution for 110x*x+30*x/2+80*0,25x=26100 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 110x*x+30*x/2+80*0,25x=26100 equation:



110x*x+30x/2+80*0.25x=26100
We move all terms to the left:
110x*x+30x/2+80*0.25x-(26100)=0
Wy multiply elements
110x^2+30x/2+0x-26100=0
We multiply all the terms by the denominator
110x^2*2+30x+0x*2-26100*2=0
We add all the numbers together, and all the variables
110x^2*2+30x+0x*2-52200=0
Wy multiply elements
220x^2+30x+0x-52200=0
We add all the numbers together, and all the variables
220x^2+31x-52200=0
a = 220; b = 31; c = -52200;
Δ = b2-4ac
Δ = 312-4·220·(-52200)
Δ = 45936961
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{45936961}=\sqrt{49*937489}=\sqrt{49}*\sqrt{937489}=7\sqrt{937489}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(31)-7\sqrt{937489}}{2*220}=\frac{-31-7\sqrt{937489}}{440} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(31)+7\sqrt{937489}}{2*220}=\frac{-31+7\sqrt{937489}}{440} $

See similar equations:

| 20+x+96x/100=0 | | n²-4n+1020=0 | | 110*x+30*x/2+80*0,25x=26100 | | u=0,75*0,6 | | u=3/4*2/3 | | 2y(-5)=23 | | X+2|3x=45 | | 5-4x/5=7 | | x*x*x-512=0 | | 2x=24.2 | | 5(x-3)=2(4x-10) | | 6+y=7.7 | | 4a-7a=3a-9 | | 5x=14x-2 | | 171*x*x=72 | | x^2+5x=2450 | | 170,7*x*x=72 | | .75x=19125 | | 10+z+10=21 | | p/3-5=p | | 170,66666666666666*x*x=72 | | 15x=84+12x | | $15x=$84+12x | | 5/2d=25/4 | | 1/2x+5(x-2)=3/2 | | 82=9(y+3)–8 | | x-(2,65x/100)=2366989,49 | | x-(2,65x/100=2366989,49 | | x-7x/100=93 | | 2+x*8=72 | | 8=q+4 | | 2/3x-5/4=5/6x |

Equations solver categories