If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying 112 = (3x + -1)(2x + 1) Reorder the terms: 112 = (-1 + 3x)(2x + 1) Reorder the terms: 112 = (-1 + 3x)(1 + 2x) Multiply (-1 + 3x) * (1 + 2x) 112 = (-1(1 + 2x) + 3x * (1 + 2x)) 112 = ((1 * -1 + 2x * -1) + 3x * (1 + 2x)) 112 = ((-1 + -2x) + 3x * (1 + 2x)) 112 = (-1 + -2x + (1 * 3x + 2x * 3x)) 112 = (-1 + -2x + (3x + 6x2)) Combine like terms: -2x + 3x = 1x 112 = (-1 + 1x + 6x2) Solving 112 = -1 + 1x + 6x2 Solving for variable 'x'. Combine like terms: 112 + 1 = 113 113 + -1x + -6x2 = -1 + 1x + 6x2 + 1 + -1x + -6x2 Reorder the terms: 113 + -1x + -6x2 = -1 + 1 + 1x + -1x + 6x2 + -6x2 Combine like terms: -1 + 1 = 0 113 + -1x + -6x2 = 0 + 1x + -1x + 6x2 + -6x2 113 + -1x + -6x2 = 1x + -1x + 6x2 + -6x2 Combine like terms: 1x + -1x = 0 113 + -1x + -6x2 = 0 + 6x2 + -6x2 113 + -1x + -6x2 = 6x2 + -6x2 Combine like terms: 6x2 + -6x2 = 0 113 + -1x + -6x2 = 0 Begin completing the square. Divide all terms by -6 the coefficient of the squared term: Divide each side by '-6'. -18.83333333 + 0.1666666667x + x2 = 0 Move the constant term to the right: Add '18.83333333' to each side of the equation. -18.83333333 + 0.1666666667x + 18.83333333 + x2 = 0 + 18.83333333 Reorder the terms: -18.83333333 + 18.83333333 + 0.1666666667x + x2 = 0 + 18.83333333 Combine like terms: -18.83333333 + 18.83333333 = 0.00000000 0.00000000 + 0.1666666667x + x2 = 0 + 18.83333333 0.1666666667x + x2 = 0 + 18.83333333 Combine like terms: 0 + 18.83333333 = 18.83333333 0.1666666667x + x2 = 18.83333333 The x term is 0.1666666667x. Take half its coefficient (0.08333333335). Square it (0.006944444447) and add it to both sides. Add '0.006944444447' to each side of the equation. 0.1666666667x + 0.006944444447 + x2 = 18.83333333 + 0.006944444447 Reorder the terms: 0.006944444447 + 0.1666666667x + x2 = 18.83333333 + 0.006944444447 Combine like terms: 18.83333333 + 0.006944444447 = 18.840277774447 0.006944444447 + 0.1666666667x + x2 = 18.840277774447 Factor a perfect square on the left side: (x + 0.08333333335)(x + 0.08333333335) = 18.840277774447 Calculate the square root of the right side: 4.340538881 Break this problem into two subproblems by setting (x + 0.08333333335) equal to 4.340538881 and -4.340538881.Subproblem 1
x + 0.08333333335 = 4.340538881 Simplifying x + 0.08333333335 = 4.340538881 Reorder the terms: 0.08333333335 + x = 4.340538881 Solving 0.08333333335 + x = 4.340538881 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-0.08333333335' to each side of the equation. 0.08333333335 + -0.08333333335 + x = 4.340538881 + -0.08333333335 Combine like terms: 0.08333333335 + -0.08333333335 = 0.00000000000 0.00000000000 + x = 4.340538881 + -0.08333333335 x = 4.340538881 + -0.08333333335 Combine like terms: 4.340538881 + -0.08333333335 = 4.25720554765 x = 4.25720554765 Simplifying x = 4.25720554765Subproblem 2
x + 0.08333333335 = -4.340538881 Simplifying x + 0.08333333335 = -4.340538881 Reorder the terms: 0.08333333335 + x = -4.340538881 Solving 0.08333333335 + x = -4.340538881 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-0.08333333335' to each side of the equation. 0.08333333335 + -0.08333333335 + x = -4.340538881 + -0.08333333335 Combine like terms: 0.08333333335 + -0.08333333335 = 0.00000000000 0.00000000000 + x = -4.340538881 + -0.08333333335 x = -4.340538881 + -0.08333333335 Combine like terms: -4.340538881 + -0.08333333335 = -4.42387221435 x = -4.42387221435 Simplifying x = -4.42387221435Solution
The solution to the problem is based on the solutions from the subproblems. x = {4.25720554765, -4.42387221435}
| 3+2s-1=8s+5-5s | | 3Q-2(1-Q)=-2Q+5(1-Q) | | 3/5-x/9=4-x/3 | | 42+(x+10)=180 | | 2x-4x=-21-5 | | 40x^2-40x=0 | | 15w-8=3w+1 | | 305w+30=750 | | 3P-2(1-P)=-2P+5(1-P) | | 8(t-4)+4t=4(3t+5)-9 | | (9x(x-4)(8x-5))=0 | | 5y-1=4y+2 | | 14=-6x+38 | | 6(-8-3x)=96 | | 5(8+x)=65 | | (Cos(6x))/2 | | -3(-4x+3)=75 | | 6x-21=5x+19 | | -14+y= | | A-12=-75 | | 15/10=x/25 | | 3x+7=4(x+1) | | -8x-5=2x+25 | | 9+a=-30 | | 7(10+6x)=28 | | 2x+2=-7x+74 | | d*23d= | | Y=BC+s | | 6(x+6)-(5-2x)+2=0 | | 5-2x=7x+104 | | -57+6n+21-4n=0 | | 5(x+2)(x+2)-(x-5)(x-5)=(2x-3)(2x-3)+19 |