112=(8+x)(7+x)

Simple and best practice solution for 112=(8+x)(7+x) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 112=(8+x)(7+x) equation:



112=(8+x)(7+x)
We move all terms to the left:
112-((8+x)(7+x))=0
We add all the numbers together, and all the variables
-((x+8)(x+7))+112=0
We multiply parentheses ..
-((+x^2+7x+8x+56))+112=0
We calculate terms in parentheses: -((+x^2+7x+8x+56)), so:
(+x^2+7x+8x+56)
We get rid of parentheses
x^2+7x+8x+56
We add all the numbers together, and all the variables
x^2+15x+56
Back to the equation:
-(x^2+15x+56)
We get rid of parentheses
-x^2-15x-56+112=0
We add all the numbers together, and all the variables
-1x^2-15x+56=0
a = -1; b = -15; c = +56;
Δ = b2-4ac
Δ = -152-4·(-1)·56
Δ = 449
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-15)-\sqrt{449}}{2*-1}=\frac{15-\sqrt{449}}{-2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-15)+\sqrt{449}}{2*-1}=\frac{15+\sqrt{449}}{-2} $

See similar equations:

| 6/10=g/35 | | 544=17y | | 800=20k | | 864=24z | | 14,124=217y | | f=9/5(191.8-273.15)32 | | x+812=1−34x | | x+714=1−32x | | 7(2c-5=7 | | 35=12x+1 | | 2418=39v | | 3(13)+5(25)=x | | 660=30w | | 2016=56t | | 4x+8(13)=156 | | 0=x^2-124 | | m²-12m+20=0 | | 180=9z | | 0=x^2+124 | | 225=25y | | -m+6=3m14 | | 5x+3(13)=156 | | 3/7x=19/2 | | 30=18m | | 8+18+10(6-11x)=-54+12x | | a+17=27 | | 9-2x=11+4 | | x+x+4÷2+x×2-4×2=49 | | 4x^2-28x-24=0 | | x×2-4×2=x | | 232+b=7/4​ | | 8=y+3y |

Equations solver categories