115(2-x)+1=1/10x

Simple and best practice solution for 115(2-x)+1=1/10x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 115(2-x)+1=1/10x equation:



115(2-x)+1=1/10x
We move all terms to the left:
115(2-x)+1-(1/10x)=0
Domain of the equation: 10x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
115(-1x+2)-(+1/10x)+1=0
We multiply parentheses
-115x-(+1/10x)+230+1=0
We get rid of parentheses
-115x-1/10x+230+1=0
We multiply all the terms by the denominator
-115x*10x+230*10x+1*10x-1=0
Wy multiply elements
-1150x^2+2300x+10x-1=0
We add all the numbers together, and all the variables
-1150x^2+2310x-1=0
a = -1150; b = 2310; c = -1;
Δ = b2-4ac
Δ = 23102-4·(-1150)·(-1)
Δ = 5331500
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{5331500}=\sqrt{100*53315}=\sqrt{100}*\sqrt{53315}=10\sqrt{53315}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2310)-10\sqrt{53315}}{2*-1150}=\frac{-2310-10\sqrt{53315}}{-2300} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2310)+10\sqrt{53315}}{2*-1150}=\frac{-2310+10\sqrt{53315}}{-2300} $

See similar equations:

| (x+6)+14=44 | | 3h=-12= | | (4y-16)+(y+8)=180 | | 128=8(-6x-8) | | x+x+x+x=8+8+4 | | 3x+-4=-10 | | 82=4x*14 | | 10x^2=20 | | x+12/4=-24 | | 1/2x-5=1/3(x+5) | | -13=4x+-1 | | 1-4(2-x)=6-(x+2) | | 3x+45=280 | | -7-7x=-112 | | 12b=- | | 7.5/(x)=5 | | 4(1-5x)=2(x-1)+6x | | x^2-15-3(2x-8)=2 | | 7.5/x=5 | | 2x+37=11x+71 | | 7x+115=196 | | (x+7)+x=34 | | 5x+10=6x-(14) | | 5x+10=6x-14 | | x^2-15-(-)(2x-8)=0 | | 5-x=60 | | 33+x+29=90 | | 5v2−5v=0 | | 33+x+29=9” | | z^2-20z=17 | | 7x=10x-(15) | | 7.50(20w)=1,200 |

Equations solver categories