If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1150=s2
We move all terms to the left:
1150-(s2)=0
We add all the numbers together, and all the variables
-1s^2+1150=0
a = -1; b = 0; c = +1150;
Δ = b2-4ac
Δ = 02-4·(-1)·1150
Δ = 4600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$s_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$s_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4600}=\sqrt{100*46}=\sqrt{100}*\sqrt{46}=10\sqrt{46}$$s_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-10\sqrt{46}}{2*-1}=\frac{0-10\sqrt{46}}{-2} =-\frac{10\sqrt{46}}{-2} =-\frac{5\sqrt{46}}{-1} $$s_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+10\sqrt{46}}{2*-1}=\frac{0+10\sqrt{46}}{-2} =\frac{10\sqrt{46}}{-2} =\frac{5\sqrt{46}}{-1} $
| P(×)=200x-500000 | | P(×)=200x-50000 | | 19u-17u=12 | | 6x^2-12x-90=2 | | -12=7-s | | 7x^2+114x-360=0 | | 7-w=3 | | 2=u-3/2 | | 3(m+2)=6(2m-5) | | 3+2x-3x=55 | | 4+2u=20 | | 7y+12=46-10y | | 199+0.2n=149+0.25n | | 35x3=5xx3 | | P=-15x^2+600x+50 | | 7x1/4=9 | | 2x^-8x=0 | | -4u+2(u+5)=16 | | -4u+2(5+u)=16 | | 216=s2 | | 3y2+25y-18=0 | | 9+10s-4=7s+21-5s | | 3x+6=9-12x | | 10p^2+67p+42=0 | | 10p+67p+42=0 | | 9(11-5)=3(3k-9) | | 13^9x=18^-x+3 | | a/1+1/3=2/5 | | 9y-60=180 | | 12x+-16=4x | | 9x^2+48x+30=0 | | 534=s2 |