If it's not what You are looking for type in the equation solver your own equation and let us solve it.
11b^2+7b-11=0
a = 11; b = 7; c = -11;
Δ = b2-4ac
Δ = 72-4·11·(-11)
Δ = 533
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-\sqrt{533}}{2*11}=\frac{-7-\sqrt{533}}{22} $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+\sqrt{533}}{2*11}=\frac{-7+\sqrt{533}}{22} $
| m-26=73 | | 4^x-1=20 | | x/8-2=7/8 | | 49y=6(8y-2)= | | v-3=-23 | | 18=y/3-13 | | 5(y+8)=5(y-4) | | 4(m+2)+m=22+2m | | 2w-12=26 | | 1/4(4x+15)=20 | | 2(4)^x-1=18 | | 8–2y=4 | | y-17=-31 | | 7z^2+7z-2=(8z+1)(z-2) | | x²-2x=0 | | 2(n+5)=−2 | | Yx5+5=3 | | 3/7=15/z | | 2/7x+1/21x+2x=31 | | x-11.18=14.75 | | 2n2+5n-25=0 | | -9h-+12h+40=22 | | 16x+23=3(4x+8)+4x-1 | | 15x+25-4x-1=35 | | F(x+3)=9x-4 | | C-15=17-c | | 4x+112=50 | | 41-6=x | | 3s+2=12=2s | | 6(6x-6)=36x-36 | | -8x+6x+3=5 | | 27+14s=7 |