If it's not what You are looking for type in the equation solver your own equation and let us solve it.
11n^2+10n=13
We move all terms to the left:
11n^2+10n-(13)=0
a = 11; b = 10; c = -13;
Δ = b2-4ac
Δ = 102-4·11·(-13)
Δ = 672
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{672}=\sqrt{16*42}=\sqrt{16}*\sqrt{42}=4\sqrt{42}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-4\sqrt{42}}{2*11}=\frac{-10-4\sqrt{42}}{22} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+4\sqrt{42}}{2*11}=\frac{-10+4\sqrt{42}}{22} $
| 4x+24=x+51 | | p-(p+4)=4(p-1)7/2p | | 4K-k-2k+5k=12 | | 44X0.06x=35X0.09x | | 2-3x=6x+5 | | 6x-12=10x+2 | | 32+25x=18 | | .5x+9=17 | | 44X0.06y=35X0.09y | | 2x+6=4x-5 | | -5x+16=7x=2(x=8) | | x+11=4x+16 | | 5^x=86 | | 11t+t-11t-1=3 | | 68=3(6r-1)-7(1-3r | | 6x12=6 | | -143=1+8(3-3b) | | 6r+4r-1=19 | | 1+y=y | | 8/180=n/6 | | y2− 1=2 | | 5/6x*2=3/8 | | 7b-5b+b-3=12 | | -3(x-9)+12=36 | | 7y-2=30 | | 20v+3v-20v=3 | | 5^2x=86 | | -22.7=x/6-3.5 | | x2=4x+10 | | 12z-11z-1=17 | | 6*x+2=4*x+20 | | 4w+4w-7w+3w-2w=6 |