If it's not what You are looking for type in the equation solver your own equation and let us solve it.
11n^2+69n-52=0
a = 11; b = 69; c = -52;
Δ = b2-4ac
Δ = 692-4·11·(-52)
Δ = 7049
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(69)-\sqrt{7049}}{2*11}=\frac{-69-\sqrt{7049}}{22} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(69)+\sqrt{7049}}{2*11}=\frac{-69+\sqrt{7049}}{22} $
| -5(3x-8)=85 | | 42x+0.4x^2-1000=0 | | 6t^2t=3 | | 33k2+112k-33=0 | | -7(3x+9)=-36 | | (A-5)(a-2)-28=0 | | 3(x+5)+16=2(x+3) | | (5x)+(9x-22)=180 | | -3(2x+6)=-42 | | 25v2-20v+4=0 | | 5x2+58x+80=0 | | 112-90=x | | 2(3x+9=36 | | m2-6m-72=0 | | 14w−w−9w=20 | | 2Dx6=36 | | v2-31v+30=0 | | 2(-1+1)+6=20-3x | | 71e+28=8e+7(4+9e) | | 5(x7)=5 | | 0=4*3^x | | k2=-12k | | 10(r-9)=-90+19r | | Y=m-3(1)-5 | | u+9=-2 | | F(3x-1)=x+2 | | 5x+2+3x+5+5x+10+4x+15+8x+8=540 | | p2-2p=0 | | 750+22(x-12)=650+130(x-10) | | 15g-2(2g+6)=11g-12 | | 8x+32=102 | | 9x+2=4x=1 |