If it's not what You are looking for type in the equation solver your own equation and let us solve it.
11t^2+14t=0
a = 11; b = 14; c = 0;
Δ = b2-4ac
Δ = 142-4·11·0
Δ = 196
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{196}=14$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-14}{2*11}=\frac{-28}{22} =-1+3/11 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+14}{2*11}=\frac{0}{22} =0 $
| x2+3x+48=0 | | 3x-3x+2x=6 | | v3=1.5 | | -3n-7-2n=-27 | | A(n)=12+(n-1)(-3) | | 12x^2-18=15x | | 9-5x^2=-3x | | 4k-2k=-10 | | x2+3x+48 =0 | | 9/4y−12=4/1y−4 | | -20=7g-6 | | -4+3x=5x+14 | | 2p+4+3p+2p-13=180 | | p−7=5.9 | | 16b+4b+2b-21b=12 | | 65+4x=150 | | 2-5(8-2g)+g=3g-8 | | 2x²+6=14 | | 15y=7(2y+24) | | 3x+3+2=2x+5+x | | 2b+4=5b-4 | | 4/k=611 | | u+2u+u-u-2u=17 | | 3x-4=-2+7 | | 5x+79=7x-7 | | 15y=7(2y=24) | | 4x3+-10x2+50=0 | | 980x^2-19.6-784=0 | | u+2u+u-u-2u=-7 | | -2x-10=7x+80 | | 3x+5=-2+7+4x | | 4x-99=180 |