If it's not what You are looking for type in the equation solver your own equation and let us solve it.
11x^2+143x=0
a = 11; b = 143; c = 0;
Δ = b2-4ac
Δ = 1432-4·11·0
Δ = 20449
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{20449}=143$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(143)-143}{2*11}=\frac{-286}{22} =-13 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(143)+143}{2*11}=\frac{0}{22} =0 $
| 8n+3=21+2n | | 2x×2x+12x-3=0 | | 16x+7=12x+23 | | 9+2c=-13 | | -13=4u+7 | | 2(x+5)-10=4x+12-6x | | 21-8x=-7x=5(1-x) | | 18=3u-15 | | 3n+9-6n=-3(n-3) | | 2.50x*2.25=9.25 | | 3g+5=2(5g-8) | | 3(x+2)=2(x+5 | | -34=u/4 | | 5v-6=31 | | 23x+12=7x+16 | | 2(4x+5)+6=4(x-13) | | 9(x-3)=9(x-6) | | 100(r)(5)=(2r)(5) | | 2−6x=5−5(x−1) | | -4/9+w=-85/6 | | 2l+2(14)=58 | | 6a+2a=136 | | 9y-77=68 | | 271=65-y | | -4/9+w=-85/6= | | 2l+2(6)=58 | | 220.46x+1275=0 | | y/3-11=21 | | 1-8x=-74(x+6) | | Z-2z÷3+z÷2=5 | | 5×+3y=15 | | 1/3x-18=-21 |