If it's not what You are looking for type in the equation solver your own equation and let us solve it.
11x^2+44x-11=0
a = 11; b = 44; c = -11;
Δ = b2-4ac
Δ = 442-4·11·(-11)
Δ = 2420
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2420}=\sqrt{484*5}=\sqrt{484}*\sqrt{5}=22\sqrt{5}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(44)-22\sqrt{5}}{2*11}=\frac{-44-22\sqrt{5}}{22} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(44)+22\sqrt{5}}{2*11}=\frac{-44+22\sqrt{5}}{22} $
| 8x-5+6-2x=59 | | 2x+10≤≤=40 | | .125(p+24)=9 | | H=90+-16t | | 6x-9+1=10 | | p=10000/(+0.50)4 | | k/3+3=2 | | 4f=3f-6 | | p=1000/(1+0.05)4 | | (x-9)(x-9)+2x(x-9)=(4+x)(4-x) | | H=2(x-5) | | (2x+1)*2=81 | | (x)(x)-10x=14 | | 5(x-2)-3(-x+2)=-(x-1)+1 | | 0.8(b-5)=3.2 | | 3(x+5)-10=185=90 | | -8x-2+3x=4-4x+8 | | _x(-4.2)=15.96 | | 4x–6=30 | | 3(m+4.2)=25.2 | | x*x*x-3x-26=0 | | 4x–4=–8 | | X+89=19+x | | 2x+21+52+11x-88= | | 2x(2)-3x=5 | | r=2.3=40 | | 7=-4x-1 | | 2x-45=105 | | 3(x+5)-10=185. | | 35–7w=14 | | -81=21+(n-1)-3 | | 7x+6=5x+5 |