If it's not what You are looking for type in the equation solver your own equation and let us solve it.
11x^2+5x-9.6=0
a = 11; b = 5; c = -9.6;
Δ = b2-4ac
Δ = 52-4·11·(-9.6)
Δ = 447.4
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-\sqrt{447.4}}{2*11}=\frac{-5-\sqrt{447.4}}{22} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+\sqrt{447.4}}{2*11}=\frac{-5+\sqrt{447.4}}{22} $
| -4.9x^2+7.5x+20=0 | | 6(y-6)=-3y-27 | | 2(y+6)-5y=3 | | -4.9x^2+7.5x-20=0 | | 8y+4=6y+6 | | x(2.5)=4.5 | | 5r+20/15=5r-20/5 | | x/7+14=2 | | 9x-(7x+9)=7x-19 | | 4w+14=32 | | 12(2y+110=12(2y+12) | | n(2n2-5n+5)/2=1 | | 4(9-3/4x)=6x | | 7x^2+3x-17=55-52x | | 2(x-8)+4x=4(x-1)+2 | | (10x-1)-(7x+3)=7x-10 | | 0+x=31930 | | x+34=46x/3 | | 10p+5=18p6/2 | | 360=2/3x+4x-170 | | 3(2x-7=9 | | 4p-10p=p+3p-2p | | 3x+1=3(x-1+4) | | 5−3m=11 | | -6x-8x=-48 | | 8+3=d | | p(5)=5^3+(2*5)^2-8*5+520 | | 4+8n=10n−4 | | 5(x+5)-3x=2(x+5) | | -6u−5u=11 | | 14m=15m+11 | | 24.544-9.81x=14.715x |