If it's not what You are looking for type in the equation solver your own equation and let us solve it.
11x^2+88x-63360=0
a = 11; b = 88; c = -63360;
Δ = b2-4ac
Δ = 882-4·11·(-63360)
Δ = 2795584
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2795584}=1672$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(88)-1672}{2*11}=\frac{-1760}{22} =-80 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(88)+1672}{2*11}=\frac{1584}{22} =72 $
| 0,476=0,0505x+0,0476 | | 64=4x-40 | | x^2-180x+360=0 | | 24+(4n+24)+8=0 | | 5x-2/3x=-15 | | -3y+7y=12/5 | | 3x=110+0,5x | | 17x+5=12x+7 | | 12x+4=7x+7 | | 7x-2=12x-17 | | (18x-3)-(2x-7)+(3x+6)=0 | | 4(-8x+5)=-32x~26 | | 2x+2/5=x-5 | | 0.05=x-0.7x | | 0.05=x-0.07x | | 5(3x+5)=-13+8 | | -12x-308=0 | | 2^(2k)+2^(k+1)=3 | | 2^(2k)+2^k*2=3 | | (3x−40)°(2x+23)°=90 | | y+10-5=5 | | 8a–2=3a+13 | | 7x+4=5^(2) | | 15+5x=4x+32 | | 8x+2(x+7)=-6 | | 4(3x-5)+23=147 | | 2(x+3)-6x=-14 | | x+5(3x-1)=107 | | 3x+9(x-11)=-3 | | 7(4x+11)+2x=-43 | | 5(6x+9)-20=115 | | A2+B2+c2=149 |