If it's not what You are looking for type in the equation solver your own equation and let us solve it.
11x^2+8x-3=0
a = 11; b = 8; c = -3;
Δ = b2-4ac
Δ = 82-4·11·(-3)
Δ = 196
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{196}=14$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-14}{2*11}=\frac{-22}{22} =-1 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+14}{2*11}=\frac{6}{22} =3/11 $
| 7.5f=4.5(f-35) | | 1/4t=-1/5 | | 80.2-3.6x=2.4x+29.8 | | |4-2x|+5=6 | | -3v-15=-5(v+1) | | (11x-12)+(4x+12)=180 | | (37x-3)+72=180 | | 5+3(-3+2x)=32 | | (22x+8)+40=180 | | 16x-10=17+20x | | 1647=27(p+20) | | 1647=27(p+20 | | 14=6+2p | | 15=z/2+11 | | 22=-3+u/5 | | v/2+15=9 | | 7m-(2m+1)=14 | | 40x^2+1=4x | | -3w+7=-7=-14 | | j/2+-2=-5 | | 53=-v+212 | | 102-w=212 | | 258-y=132 | | (X+1)x=12 | | 48=7y-1 | | p-67=21 | | 8(4x+5)=-23+6x | | -96=-8(u+4) | | j/4=-3 | | -6=-(x-5)-3(5+2x)-4(2x+4) | | y+-14=-4 | | -2/7x-6=2 |