If it's not what You are looking for type in the equation solver your own equation and let us solve it.
11x^2-10x=23
We move all terms to the left:
11x^2-10x-(23)=0
a = 11; b = -10; c = -23;
Δ = b2-4ac
Δ = -102-4·11·(-23)
Δ = 1112
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1112}=\sqrt{4*278}=\sqrt{4}*\sqrt{278}=2\sqrt{278}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-2\sqrt{278}}{2*11}=\frac{10-2\sqrt{278}}{22} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+2\sqrt{278}}{2*11}=\frac{10+2\sqrt{278}}{22} $
| 2x−5/9=3 | | -19.1+2.7t=19.91+7.4t | | x2-6x-11=0 | | 2x−59=3 | | 6n-19+20=5n+5 | | 13x-(7x-5)=59 | | 19x+2+(-2+41x=180 | | 27=9⋅s | | 7-14y=-5-13y | | k2=-6k | | -9h=11-8h | | 9g=15/10 | | 14=7(r+2) | | 19.2-4.1k+7.7k=18.54+3k | | 5^x-9=6x+1 | | 418.56=160+1.01x | | -v-18=-3v | | 7x+2.5=10x-5 | | m+12=-15 | | x2+7x+49=-11 | | 19-u+19=-19+2u | | -17q+2=-16q+12 | | 2x+28+x+24=-12 | | 17.5=1/2(7)(h) | | 4x2-16+12=0 | | -8v+8=2-7v | | v=350 | | -3s-1=3-s+6 | | 7+3(r+1)=8+3r | | -6-7m=-5m | | 30−2x*x=−6 | | -6-7m=-5 |