If it's not what You are looking for type in the equation solver your own equation and let us solve it.
11x^2-121=0
a = 11; b = 0; c = -121;
Δ = b2-4ac
Δ = 02-4·11·(-121)
Δ = 5324
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{5324}=\sqrt{484*11}=\sqrt{484}*\sqrt{11}=22\sqrt{11}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-22\sqrt{11}}{2*11}=\frac{0-22\sqrt{11}}{22} =-\frac{22\sqrt{11}}{22} =-\sqrt{11} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+22\sqrt{11}}{2*11}=\frac{0+22\sqrt{11}}{22} =\frac{22\sqrt{11}}{22} =\sqrt{11} $
| 9(2x-1)13x=3 | | (86+x)/2=89 | | 25=2x+10 | | 4x-4=3x+7= | | X2+20x=384 | | 3t+2=2t-5 | | 25x+73=27 | | Y=4x^2-5x-10 | | 3x-17=183 | | 7=w-30/w | | 2x-12-14=4x-16 | | 100=x(.02)-x | | X2+y2-10y+9=0 | | 2z(z-3)(z+8)=0 | | 5(x+15)=-7(3-x)-7x | | 22x+5=19-4x | | 5y-10=4y+24 | | 35x-6=7x+35 | | 9x-7=5x+19 | | 3x-7=2187 | | 9v+27=6v | | 34x-3=81 | | 7/8u=-49 | | 8-3z=35 | | y-5.3=14.3 | | 4+3(x+2)=104 | | 5x+3x=14x | | 130=16x+4+4x+6 | | 14x=5x-3x | | 53y-y=53 | | 6(2x+1)+(13x-7)=0 | | x=1*2*3*4*5*6*7*8*9*10*11*12*13*14*15*16 |