If it's not what You are looking for type in the equation solver your own equation and let us solve it.
11y^2+2y-1=0
a = 11; b = 2; c = -1;
Δ = b2-4ac
Δ = 22-4·11·(-1)
Δ = 48
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{48}=\sqrt{16*3}=\sqrt{16}*\sqrt{3}=4\sqrt{3}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-4\sqrt{3}}{2*11}=\frac{-2-4\sqrt{3}}{22} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+4\sqrt{3}}{2*11}=\frac{-2+4\sqrt{3}}{22} $
| 55=x-35 | | |5x+7|=-5 | | -3(y+5=15 | | H=-5t^2+100t+350 | | (5x-17)=(2x=50) | | -9=-t+12 | | 9+30x=11+22x | | 5x-17=2x=50 | | x²+24=60 | | 5(2x+10)=15x-10 | | −2z−(−10z+7)=2z-4-9z | | -3x+6=-2x-20 | | 2(x+5)-(4x+2x)=66 | | 2(x+5)-4x+2x)=66 | | f(5)=21(5)+14 | | 15y+5y=-15 | | 7x+12÷3x=2 | | 10x-13=7x+20 | | 3(r-14)=6 | | 5u+u+3u=14 | | 22x^2+16x=0 | | A=2d-1 | | 2(x-4)^2=6 | | 246=6(−6y+5) | | -5|v+5|=-35 | | 8(6-3p)=-2p+26 | | 1/2a-30=3/2a-20 | | 8x-2=9+.7x | | 6=3-2n+5n | | 3y+6+4y-7=- | | (=$56.7k-$41.5k) | | 25+15x=80 |