12(6x-4)+9x-360=2x-342

Simple and best practice solution for 12(6x-4)+9x-360=2x-342 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 12(6x-4)+9x-360=2x-342 equation:


Simplifying
12(6x + -4) + 9x + -360 = 2x + -342

Reorder the terms:
12(-4 + 6x) + 9x + -360 = 2x + -342
(-4 * 12 + 6x * 12) + 9x + -360 = 2x + -342
(-48 + 72x) + 9x + -360 = 2x + -342

Reorder the terms:
-48 + -360 + 72x + 9x = 2x + -342

Combine like terms: -48 + -360 = -408
-408 + 72x + 9x = 2x + -342

Combine like terms: 72x + 9x = 81x
-408 + 81x = 2x + -342

Reorder the terms:
-408 + 81x = -342 + 2x

Solving
-408 + 81x = -342 + 2x

Solving for variable 'x'.

Move all terms containing x to the left, all other terms to the right.

Add '-2x' to each side of the equation.
-408 + 81x + -2x = -342 + 2x + -2x

Combine like terms: 81x + -2x = 79x
-408 + 79x = -342 + 2x + -2x

Combine like terms: 2x + -2x = 0
-408 + 79x = -342 + 0
-408 + 79x = -342

Add '408' to each side of the equation.
-408 + 408 + 79x = -342 + 408

Combine like terms: -408 + 408 = 0
0 + 79x = -342 + 408
79x = -342 + 408

Combine like terms: -342 + 408 = 66
79x = 66

Divide each side by '79'.
x = 0.835443038

Simplifying
x = 0.835443038

See similar equations:

| 4m+3d-5m+d=0 | | (16+8)x=450+6x | | P^2+15p+56=0 | | 7.6x-3.9=26.5 | | 6(x+8)-4(x-2)=26 | | .05x-2+2x=3x-.95x+3 | | b^2+3=19 | | -4y+7=-10y+37 | | 9-(x+18)=-x-7 | | 105+25h=180 | | 30-6n=-12+9n | | 7m-5(m+1)=2(3-m)-5 | | -3z+8(z+y)=0 | | 5x+6+2x-1=10+3 | | 7x-12=5x+6 | | 27=6s-9 | | -29=-3x-3x+1 | | 180+105=25h | | 5m=-40 | | -3(x+4)-21x=21 | | 7x+14+8x+6=180 | | 4x+2(x-7)=-8 | | 7x-12=4x-15 | | 5+0+0.01= | | y=x^2+x-20 | | 8x+6-9=2-x-15 | | 21x^2-97x+63=0 | | 2+7x+5x=50 | | -3(8-7a)=-4(1-4a) | | 11.50x=409.50 | | 14x+17+19x=-255 | | 0.05(0.3m+35n)-0.8(-0.09m-22m)= |

Equations solver categories