12(y+1)=4(4y+3)y=

Simple and best practice solution for 12(y+1)=4(4y+3)y= equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 12(y+1)=4(4y+3)y= equation:



12(y+1)=4(4y+3)y=
We move all terms to the left:
12(y+1)-(4(4y+3)y)=0
We multiply parentheses
12y-(4(4y+3)y)+12=0
We calculate terms in parentheses: -(4(4y+3)y), so:
4(4y+3)y
We multiply parentheses
16y^2+12y
Back to the equation:
-(16y^2+12y)
We get rid of parentheses
-16y^2+12y-12y+12=0
We add all the numbers together, and all the variables
-16y^2+12=0
a = -16; b = 0; c = +12;
Δ = b2-4ac
Δ = 02-4·(-16)·12
Δ = 768
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{768}=\sqrt{256*3}=\sqrt{256}*\sqrt{3}=16\sqrt{3}$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-16\sqrt{3}}{2*-16}=\frac{0-16\sqrt{3}}{-32} =-\frac{16\sqrt{3}}{-32} =-\frac{\sqrt{3}}{-2} $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+16\sqrt{3}}{2*-16}=\frac{0+16\sqrt{3}}{-32} =\frac{16\sqrt{3}}{-32} =\frac{\sqrt{3}}{-2} $

See similar equations:

| 3x+13=106 | | 4=(c+3)10 | | /3t+44=50 | | -(c-6)=6c= | | 22x^2+4x-658=0 | | Y=|x+10| | | l-8=-1 | | 8-6b=-16 | | x-20+x-15+x-5+2x=360 | | 5v+9=-11 | | 3G-2h=-5 | | l-6=6 | | 18-4d/4=2-2d | | 1-5l=11 | | -15r=-33-5r | | 9+½=y+4 | | r/10=8 | | 10-3f=-5 | | 2+1x+5=3x-12 | | 9x^2-10x-3=0 | | 2x–6+2x-1=24 | | A(2y-5)=3(4y+7) | | 12-4r=-4 | | 17-(2x-1)⁴=1 | | (a-12)(a+2)-(a-3)(a-7)=45 | | 3x+2=3x–12 | | 100x-5=90 | | 2=6x+5 | | 8+3m=2 | | -1.4=7y | | 4+5k=29 | | 2^(2x+2)-2^(2x)=12 |

Equations solver categories