12+(1/5)(10x+5)=59

Simple and best practice solution for 12+(1/5)(10x+5)=59 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 12+(1/5)(10x+5)=59 equation:



12+(1/5)(10x+5)=59
We move all terms to the left:
12+(1/5)(10x+5)-(59)=0
Domain of the equation: 5)(10x+5)!=0
x∈R
We add all the numbers together, and all the variables
(+1/5)(10x+5)+12-59=0
We add all the numbers together, and all the variables
(+1/5)(10x+5)-47=0
We multiply parentheses ..
(+10x^2+1/5*5)-47=0
We multiply all the terms by the denominator
(+10x^2+1-47*5*5)=0
We get rid of parentheses
10x^2+1-47*5*5=0
We add all the numbers together, and all the variables
10x^2-1174=0
a = 10; b = 0; c = -1174;
Δ = b2-4ac
Δ = 02-4·10·(-1174)
Δ = 46960
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{46960}=\sqrt{16*2935}=\sqrt{16}*\sqrt{2935}=4\sqrt{2935}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{2935}}{2*10}=\frac{0-4\sqrt{2935}}{20} =-\frac{4\sqrt{2935}}{20} =-\frac{\sqrt{2935}}{5} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{2935}}{2*10}=\frac{0+4\sqrt{2935}}{20} =\frac{4\sqrt{2935}}{20} =\frac{\sqrt{2935}}{5} $

See similar equations:

| a2-7a-60=0 | | 6/19=2/7x | | -12=3-5y | | (1/2)(x+9)-2=7 | | 3/4x+5/12=23/12 | | (3-x)×5+8=18 | | x/5=7/14 | | (x/4)+10=(1/20) | | (12*x*8)+(x*10)=2862 | | 2x1+3x2=30 | | x^2-2x+2x=0 | | 1+6x=21 | | x+3x-6+2/3x+2=150 | | -10x-18=19-8x | | 4x+10=x-7 | | -130-8x=9x23 | | 3.50x5+5.50x5+6=51 | | 8/x+5=2/x-3 | | (12+m)=+4 | | 17-2+7y-4(y+3)=-5(4y-5)-8(y-1)-23y+20 | | 177=-v+61 | | R(x)=13.5x-0.05x^2 | | 7+2k=1-4k | | 11x-4+50=180 | | 1/2(4x-8)=-3/4(8x+16) | | -2x^2+10x-25/2=0 | | 27-3+8y-4(y+4)=-4(5y-3)-7(y-1)-14y+6 | | 7n+2n=-6n-n+16 | | 20-y=169 | | 7n+2n=6n-n+16 | | 10k+3k-7k+3k=18 | | 4.9t^2-4.6t-11=0 |

Equations solver categories