12+(2/5)x=16

Simple and best practice solution for 12+(2/5)x=16 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 12+(2/5)x=16 equation:



12+(2/5)x=16
We move all terms to the left:
12+(2/5)x-(16)=0
Domain of the equation: 5)x!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
(+2/5)x+12-16=0
We add all the numbers together, and all the variables
(+2/5)x-4=0
We multiply parentheses
2x^2-4=0
a = 2; b = 0; c = -4;
Δ = b2-4ac
Δ = 02-4·2·(-4)
Δ = 32
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{32}=\sqrt{16*2}=\sqrt{16}*\sqrt{2}=4\sqrt{2}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{2}}{2*2}=\frac{0-4\sqrt{2}}{4} =-\frac{4\sqrt{2}}{4} =-\sqrt{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{2}}{2*2}=\frac{0+4\sqrt{2}}{4} =\frac{4\sqrt{2}}{4} =\sqrt{2} $

See similar equations:

| 94=x/(x+20)/100 | | 3x-(x-4)=7-(x-1) | | -52=6x12^2x+1 | | 30x+90=32x+32 | | 243^2x=81^2x | | 2^3(6x-12)=24 | | 4x-28=5x-10 | | -34=-2+8x | | 2.3(6x-12)=24 | | 6n-4+8n=18 | | 91=-9+10x | | 0.66666666666(6x-12)=24 | | X2+3.5x-36=0 | | 1/9(11/8x+21/2)=11/2x-52/9 | | 3/2=13x-5 | | 6r-5+8r=-5 | | 5x–3(2x–6)=2(4x–9) | | 3/2(x-5)-3/2=9/2=x | | a+5+2=5 | | 2(3x-1)=5(x+5) | | (2-5m)=(-5) | | -4n+8+8n=2(6n-12) | | 5+x.2=4x | | 4b-3=36 | | 5+x/2=4x | | 4÷(s(s+1)(7+3s))=0 | | 8-7m+3m=12 | | 5+x/2=41x | | 4b+3=36 | | 24-x-3x=0 | | x-24-3x=0 | | 9x-2(x+8)=5x-11(2-x) |

Equations solver categories