If it's not what You are looking for type in the equation solver your own equation and let us solve it.
12-(2/3)(2x-5)+3x=5
We move all terms to the left:
12-(2/3)(2x-5)+3x-(5)=0
Domain of the equation: 3)(2x-5)!=0We add all the numbers together, and all the variables
x∈R
-(+2/3)(2x-5)+3x+12-5=0
We add all the numbers together, and all the variables
3x-(+2/3)(2x-5)+7=0
We multiply parentheses ..
-(+4x^2+2/3*-5)+3x+7=0
We multiply all the terms by the denominator
-(+4x^2+2+3x*3*-5)+7*3*-5)=0
We add all the numbers together, and all the variables
-(+4x^2+2+3x*3*-5)=0
We get rid of parentheses
-4x^2-3x*3*-2+5=0
We add all the numbers together, and all the variables
-4x^2-3x*3*+3=0
Wy multiply elements
-4x^2-9x^2+3=0
We add all the numbers together, and all the variables
-13x^2+3=0
a = -13; b = 0; c = +3;
Δ = b2-4ac
Δ = 02-4·(-13)·3
Δ = 156
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{156}=\sqrt{4*39}=\sqrt{4}*\sqrt{39}=2\sqrt{39}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{39}}{2*-13}=\frac{0-2\sqrt{39}}{-26} =-\frac{2\sqrt{39}}{-26} =-\frac{\sqrt{39}}{-13} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{39}}{2*-13}=\frac{0+2\sqrt{39}}{-26} =\frac{2\sqrt{39}}{-26} =\frac{\sqrt{39}}{-13} $
| -1.5r-8=50 | | -5r+8=32 | | 0,75y=9 | | 2.75x+15=28.76 | | 6x+6=2x+2= | | x-(1.25x)=100 | | 9x-18x+7=0 | | 4/3*1/2=x | | Y=2x-75 | | Y=2x-75 | | 4z+2=7 | | 12t2−25t+12=0 | | 2/3x+1/3x=6+x-2/3x | | 2-3k=2-3k | | (x-11)=17 | | Y^=3.7x-18 | | 560000=2000000-(x*9000000) | | R(x)=6x^2+7x-5/3x+5 | | 4y(7-2)^2=400 | | 11x/(7+6x)=3 | | 2h+7/13=7/13 | | x+10×2=180 | | 7y-15+2y=25 | | x+10.2=180 | | 5/2x-2=x+28 | | Y=3x;x | | 2x-7=5x-3=27-2x=17 | | Y=3x;x=-1 | | 13-19x+9+7x=-x-4-13x | | Y=3x;x- | | 2x-7=5x-12 | | 3a+6=–6 |