12-1.2x(x-5)=22-2(x+4)

Simple and best practice solution for 12-1.2x(x-5)=22-2(x+4) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 12-1.2x(x-5)=22-2(x+4) equation:



12-1.2x(x-5)=22-2(x+4)
We move all terms to the left:
12-1.2x(x-5)-(22-2(x+4))=0
We multiply parentheses
-x^2+5x-(22-2(x+4))+12=0
We calculate terms in parentheses: -(22-2(x+4)), so:
22-2(x+4)
determiningTheFunctionDomain -2(x+4)+22
We multiply parentheses
-2x-8+22
We add all the numbers together, and all the variables
-2x+14
Back to the equation:
-(-2x+14)
We add all the numbers together, and all the variables
-1x^2+5x-(-2x+14)+12=0
We get rid of parentheses
-1x^2+5x+2x-14+12=0
We add all the numbers together, and all the variables
-1x^2+7x-2=0
a = -1; b = 7; c = -2;
Δ = b2-4ac
Δ = 72-4·(-1)·(-2)
Δ = 41
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-\sqrt{41}}{2*-1}=\frac{-7-\sqrt{41}}{-2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+\sqrt{41}}{2*-1}=\frac{-7+\sqrt{41}}{-2} $

See similar equations:

| 16u+14=17u | | 4(k-2)k=5 | | -96=-4(5r-1) | | a/11+13=18 | | (s+2)(s+2)=-9 | | x-45=98 | | 1.9y=-8.2 | | 8+5a=68 | | 7^(-5-x)=232 | | 4m–25=10+9m | | t+13/4=10 | | -4=-8+z/3 | | 4(-3-4x)=7-2(-3-4x) | | 3(p-80)=39 | | 32=-8v+2(v+7) | | 33=9x-7+x | | 325+105x=800 | | 1.1x+4.3=38 | | 3(j+11)=93 | | 45-n=6 | | -1x-1=-4 | | 150x=500-x | | 90=8p+7p | | F(x)=3x+1/x-2 | | 23x+3=8 | | 4x+30+3x=5x-10-3x | | 1/2*(x+9)=7 | | 64^(x)=8^(3x+1) | | 8x+16=7x+11 | | 5*(x+16)=45 | | 4(x-5)=3(2x+5) | | 2x3x+x=14 |

Equations solver categories