12-4/5x=4x-6.4

Simple and best practice solution for 12-4/5x=4x-6.4 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 12-4/5x=4x-6.4 equation:



12-4/5x=4x-6.4
We move all terms to the left:
12-4/5x-(4x-6.4)=0
Domain of the equation: 5x!=0
x!=0/5
x!=0
x∈R
We get rid of parentheses
-4/5x-4x+6.4+12=0
We multiply all the terms by the denominator
-4x*5x+(6.4)*5x+12*5x-4=0
We multiply parentheses
-4x*5x+32x+12*5x-4=0
Wy multiply elements
-20x^2+32x+60x-4=0
We add all the numbers together, and all the variables
-20x^2+92x-4=0
a = -20; b = 92; c = -4;
Δ = b2-4ac
Δ = 922-4·(-20)·(-4)
Δ = 8144
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{8144}=\sqrt{16*509}=\sqrt{16}*\sqrt{509}=4\sqrt{509}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(92)-4\sqrt{509}}{2*-20}=\frac{-92-4\sqrt{509}}{-40} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(92)+4\sqrt{509}}{2*-20}=\frac{-92+4\sqrt{509}}{-40} $

See similar equations:

| -2(6t-8)=16t+4(-7t-2) | | 4x+12=4x-18 | | 3(4a=12 | | j+167=180 | | 3{x-8}=5x+7 | | 70°+65°+x+54=180 | | 4/n+10=2/n+9 | | 7+s=9 | | 26+48h=290 | | 2(x+1)+6=20-3x.X=4 | | (2X)-y=17 | | -5+n/2=6 | | -2(-5p-10)=15+10p | | 3(x-6)+2x-8=-1 | | 10n-22=2n+34 | | 63/4=5/8m | | 4x–5=2x+18 | | -5=d/7 | | 3+2(3x–8)=3+6x–16 | | 1000​(9x−​10)=50​(928+​100x) | | x/7-9=-15 | | 4(2x+3)=(2x-2)+(3x+7) | | (2x)+(x+60)=115 | | 11592x=− | | 42=-7/8x+105 | | (-x+3)=(4x+5) | | -x-27=2x | | 42=7/8x+105 | | 6^10x=6^4x+18 | | 5n+18-8n-12=-30 | | 5(2x+6)=83 | | -20+6w-18=-2(-3w+19) |

Equations solver categories