12-9/16a=3/4a

Simple and best practice solution for 12-9/16a=3/4a equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 12-9/16a=3/4a equation:



12-9/16a=3/4a
We move all terms to the left:
12-9/16a-(3/4a)=0
Domain of the equation: 16a!=0
a!=0/16
a!=0
a∈R
Domain of the equation: 4a)!=0
a!=0/1
a!=0
a∈R
We add all the numbers together, and all the variables
-9/16a-(+3/4a)+12=0
We get rid of parentheses
-9/16a-3/4a+12=0
We calculate fractions
(-36a)/64a^2+(-48a)/64a^2+12=0
We multiply all the terms by the denominator
(-36a)+(-48a)+12*64a^2=0
Wy multiply elements
768a^2+(-36a)+(-48a)=0
We get rid of parentheses
768a^2-36a-48a=0
We add all the numbers together, and all the variables
768a^2-84a=0
a = 768; b = -84; c = 0;
Δ = b2-4ac
Δ = -842-4·768·0
Δ = 7056
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{7056}=84$
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-84)-84}{2*768}=\frac{0}{1536} =0 $
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-84)+84}{2*768}=\frac{168}{1536} =7/64 $

See similar equations:

| 2/x(x+1)-1/x+1=3/x | | 18(3x)=14(4x-1) | | 18(3x)=14(7x-1) | | 7(9+k)=-2 | | x=1+4/5 | | 2x+5=-3x+14 | | 9x/5=10 | | |3x+9|-20=-14 | | Y+3=-5(x+10) | | 2/9=5/k+8 | | −4(x+5)=35​ (3x−12 | | 54=9-3x | | 373+x=400 | | 7−6v=−5−8v | | 0.2x-0.75=1.2x-012 | | 1.2x-11.2=2.8+0.8x | | 3x+2(x+2)=-31 | | 2p^2+8=0 | | 800=40x | | w-2(8-2)=-31 | | 4/5=n/5= | | 6x-4x=4x | | 4-v(5-v)=-60 | | 1/x+2/3=7/3x | | 7-3(x-4)=2(4x+1 | | -7+2y=-(y-5) | | (-23)=(-20)+3d | | 4.50+0.89p=7.17 | | 2/3n+1/2n=7 | | 5/8x-12=1/2x-5 | | v=1*60*6 | | 6g^2-24=0 |

Equations solver categories