If it's not what You are looking for type in the equation solver your own equation and let us solve it.
12.35+21.51y(0.005537-y)=100-68.03y(1+y)
We move all terms to the left:
12.35+21.51y(0.005537-y)-(100-68.03y(1+y))=0
We add all the numbers together, and all the variables
21.51y(-1y+0.005537)-(100-68.03y(y+1))+12.35=0
We multiply parentheses
-21y^2+0.116277y-(100-68.03y(y+1))+12.35=0
We calculate terms in parentheses: -(100-68.03y(y+1)), so:We get rid of parentheses
100-68.03y(y+1)
determiningTheFunctionDomain -68.03y(y+1)+100
We multiply parentheses
-68y^2-68y+100
Back to the equation:
-(-68y^2-68y+100)
-21y^2+68y^2+68y+0.116277y-100+12.35=0
We add all the numbers together, and all the variables
47y^2+68.116277y-87.65=0
a = 47; b = 68.116277; c = -87.65;
Δ = b2-4ac
Δ = 68.1162772-4·47·(-87.65)
Δ = 21118.027192341
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(68.116277)-\sqrt{21118.027192341}}{2*47}=\frac{-68.116277-\sqrt{21118.027192341}}{94} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(68.116277)+\sqrt{21118.027192341}}{2*47}=\frac{-68.116277+\sqrt{21118.027192341}}{94} $
| 4+4x=27 | | 12.20+19.61y(0.005478-y)=100-76.34y(1+y) | | 19.61+24.39y(0.003262-y)=100-64.10y(1+y) | | 4x=0.32 | | 6(3-2x)=24 | | 9b=14 | | 3y2-10y+8=0 | | X+(3x+3)=25 | | 1/5f-2/3=-1/5f+2/3 | | -4/5f+1=18 | | 2/5z-3/2=5/2+2/5z-1 | | 3y+2/5=17 | | 5(3x-3)=2(6+3x) | | 72.99+20.41y(0.004095-y)=100-16.39y(1+y) | | 3-2x=18-5x | | 11x/6=264 | | 2(x+2)^2-8=56 | | 8+3x-17=21 | | 28+5x+12=45 | | 4-x÷3=6 | | 2a+5=a+11 | | 9x+35=62 | | 26+4(m-6)=0 | | 44.4+32.26y(0.002372-y)=100-29.41y(1+y) | | 2x+x=298 | | x^2+8x+40=8 | | -2m-6m=8 | | 7-21(x+3)=15(2x-5) | | |2x+1|+|x+8|=4x | | 7x-11=2x+3 | | -1/2(8x-10)=2x+2 | | (x+5)^2+(x-2)^2=37 |