120(t)=1/2t+3

Simple and best practice solution for 120(t)=1/2t+3 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 120(t)=1/2t+3 equation:



120(t)=1/2t+3
We move all terms to the left:
120(t)-(1/2t+3)=0
Domain of the equation: 2t+3)!=0
t∈R
We get rid of parentheses
120t-1/2t-3=0
We multiply all the terms by the denominator
120t*2t-3*2t-1=0
Wy multiply elements
240t^2-6t-1=0
a = 240; b = -6; c = -1;
Δ = b2-4ac
Δ = -62-4·240·(-1)
Δ = 996
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{996}=\sqrt{4*249}=\sqrt{4}*\sqrt{249}=2\sqrt{249}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-2\sqrt{249}}{2*240}=\frac{6-2\sqrt{249}}{480} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+2\sqrt{249}}{2*240}=\frac{6+2\sqrt{249}}{480} $

See similar equations:

| 120(t)=1/2+3 | | 6x-7=3x+103 | | F(x)=(3x^2×x+2)(x) | | ((x+3)/2)+((5(7x+9))/3)=((3(4x+3))/12)-(7/2) | | 9x+-6=27 | | 4x+17=179 | | -16/40=4x+10/5 | | 6+d=d*22/7 | | 7(4x-9)=-62+6x | | 3x-7(-7x+21)=113 | | 10=39t-16t^2 | | (x-9)/5+8=2x-28= | | 24x^2+108x+216=0 | | 3v^2=-6v+8 | | 10k^2-7k=0 | | 6(x=3)-6=24 | | 14+8x=6x-2 | | 3x-1=9x+12 | | 3u+14=10u | | x*6/5=1-x/6 | | 8^(2x-10)=64 | | -1/3x^2-50/3x-40=0 | | 25^x+3=1/5 | | 0.7n+5=16.34 | | 4^3x-3=1 | | 3(x-6)=2(x=4) | | k/0.1=2.44 | | 5u=11 | | 10c=11 | | (x-9)/5+8=2x-28 | | 10x^+12x+2=0 | | 3^-2x+3=1/27 |

Equations solver categories