If it's not what You are looking for type in the equation solver your own equation and let us solve it.
120+10t+-5t^2=0
We add all the numbers together, and all the variables
-5t^2+10t=0
a = -5; b = 10; c = 0;
Δ = b2-4ac
Δ = 102-4·(-5)·0
Δ = 100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{100}=10$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-10}{2*-5}=\frac{-20}{-10} =+2 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+10}{2*-5}=\frac{0}{-10} =0 $
| n2=3 | | e/9=5/45 | | 2T-8+6T-5x11=-6+6T-3x2T+12/3 | | 2T–8+6T-5x11=-6+6T-3x2T+12/3 | | 4n=11 | | 100/90=38/x | | 10/9=3,8/x | | 0.0027^2÷0.000081=0.3^x+4 | | 4x÷3=12 | | √x2+5x+4=2 | | 10(z+2)-2(z-2)=3(z-4)+4(z-1) | | 100=x+30+70-20 | | 100=x+20+30+70-20 | | (3z*3z*3z)-(z*z)-9z+10=0 | | 3/5=s/15 | | 190.x=1900 | | 0,5x+12=15 | | 8(m-3)=-123 | | -10x+2=-3x-9 | | 14=x-2•3 | | x/32=9 | | (36-5x)^3/2=27 | | 3800/x=380 | | 16y^2-18y+5=0 | | -20m+300=20 | | 4(33+f)=148 | | -10.5=-7(5d+5) | | 1+2x−x=x−5+x | | 9(g-18)=-108 | | (2b-5)^2+b^2=25^2 | | 3x+4x+6=4 | | 3/2(3x+5)=-4 |