120+70+(16x-5)(20x-5)=360

Simple and best practice solution for 120+70+(16x-5)(20x-5)=360 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 120+70+(16x-5)(20x-5)=360 equation:



120+70+(16x-5)(20x-5)=360
We move all terms to the left:
120+70+(16x-5)(20x-5)-(360)=0
We add all the numbers together, and all the variables
(16x-5)(20x-5)-170=0
We multiply parentheses ..
(+320x^2-80x-100x+25)-170=0
We get rid of parentheses
320x^2-80x-100x+25-170=0
We add all the numbers together, and all the variables
320x^2-180x-145=0
a = 320; b = -180; c = -145;
Δ = b2-4ac
Δ = -1802-4·320·(-145)
Δ = 218000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{218000}=\sqrt{400*545}=\sqrt{400}*\sqrt{545}=20\sqrt{545}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-180)-20\sqrt{545}}{2*320}=\frac{180-20\sqrt{545}}{640} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-180)+20\sqrt{545}}{2*320}=\frac{180+20\sqrt{545}}{640} $

See similar equations:

| -9x2.3=-8x-1.7 | | z=3.5X=9.90 | | 2x+x+15=-x+(-x) | | 6x^2-6x-540=0 | | 55x+5=50+10x | | 4x+2(-x)+1=x+13 | | (0.05x+1x+5x)/100=100 | | 8.7-10=y | | (0.05x/100)+(1x/100)+(5x/100)=100 | | 5(x-6)+23=7x-(2x+5)-2 | | 68+65+2x=360 | | 8.9x10-6=x(4x^2+0.8x+0.04) | | (7r+1)(r-12)=0 | | 2x-1.5x-13=2 | | 4(-x)+(-6)+x=4+(-x)+3x | | 8.9x10^-6=x(4x^2+0.8x+0.04) | | 2(-x)+(-10)+(-x)=x+(-6) | | 2(-x)+(-10)+(-x)=x | | 2/3x-35=x-50 | | 2x(3x+1)(x-3)=0 | | 5p^2-2P-6=0 | | 2x+4+5x+6x=32 | | 3m+2.8=34.6 | | 20+2r=2(r+10 | | 23+x=16x4 | | 3x-1/2=2x+1/3 | | 9(m-7)=-63+9m | | 4.8x+35.7=12.7-6.7x | | 3x+(-3)+2x=3x+x+(-9) | | 5+4x=11.8 | | 9x-25-8=0 | | 12m+50=74.90 |

Equations solver categories