1200+x/2x=600/x

Simple and best practice solution for 1200+x/2x=600/x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1200+x/2x=600/x equation:



1200+x/2x=600/x
We move all terms to the left:
1200+x/2x-(600/x)=0
Domain of the equation: 2x!=0
x!=0/2
x!=0
x∈R
Domain of the equation: x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
x/2x-(+600/x)+1200=0
We get rid of parentheses
x/2x-600/x+1200=0
We calculate fractions
x^2/2x^2+(-1200x)/2x^2+1200=0
We multiply all the terms by the denominator
x^2+(-1200x)+1200*2x^2=0
Wy multiply elements
x^2+2400x^2+(-1200x)=0
We get rid of parentheses
x^2+2400x^2-1200x=0
We add all the numbers together, and all the variables
2401x^2-1200x=0
a = 2401; b = -1200; c = 0;
Δ = b2-4ac
Δ = -12002-4·2401·0
Δ = 1440000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{1440000}=1200$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1200)-1200}{2*2401}=\frac{0}{4802} =0 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1200)+1200}{2*2401}=\frac{2400}{4802} =1200/2401 $

See similar equations:

| 20x-5=19+7 | | 4x+8+2x-33=180 | | 2x*5=55 | | -8k=-88 | | 3.6q-5.9-4.7q=-0.1q-5.9 | | 3/4x-5/8x=3 | | 4.2q-5.4-5.7q=-0.5q-5.4 | | x^2+(x-18)^2=164 | | 2/9-x=4/2x+3 | | 2m^2+4m=6 | | 6x+5(2x+7)=45 | | 10y+30+15=8y+20 | | y=5.3=14.2 | | 0.4z=36 | | 8w=2=19 | | 3(9x-4.3x-1)+1=0 | | 20-x=-14 | | 2x^2+4x+4=320 | | 0.05x+0.25x-0.2x=x-0.9 | | 3^r=1/9 | | 42y+1=7y= | | a-57=64 | | 4z/10+9=8 | | 45=3g*5 | | 8g/10=10-5 | | 7g*5=72-2 | | 2^(2x+5)=3^(x-6) | | 12-3x=10-x | | 3=x(7-3x)+3 | | x^2-111x+3080=0 | | 3m+6=7m+70 | | 1.4x^2+2x-1=0 |

Equations solver categories