1200=(2x-20)(5x-20)

Simple and best practice solution for 1200=(2x-20)(5x-20) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1200=(2x-20)(5x-20) equation:



1200=(2x-20)(5x-20)
We move all terms to the left:
1200-((2x-20)(5x-20))=0
We multiply parentheses ..
-((+10x^2-40x-100x+400))+1200=0
We calculate terms in parentheses: -((+10x^2-40x-100x+400)), so:
(+10x^2-40x-100x+400)
We get rid of parentheses
10x^2-40x-100x+400
We add all the numbers together, and all the variables
10x^2-140x+400
Back to the equation:
-(10x^2-140x+400)
We get rid of parentheses
-10x^2+140x-400+1200=0
We add all the numbers together, and all the variables
-10x^2+140x+800=0
a = -10; b = 140; c = +800;
Δ = b2-4ac
Δ = 1402-4·(-10)·800
Δ = 51600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{51600}=\sqrt{400*129}=\sqrt{400}*\sqrt{129}=20\sqrt{129}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(140)-20\sqrt{129}}{2*-10}=\frac{-140-20\sqrt{129}}{-20} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(140)+20\sqrt{129}}{2*-10}=\frac{-140+20\sqrt{129}}{-20} $

See similar equations:

| 5(2n+1)=45 | | 45+9x-6+14x-6=180 | | -2(n+4)=-12 | | -9=-3x+10 | | x=20/15 | | 12=0.6a. | | 2x+1/3=3x | | 2148=2x(2x+3)(x+4) | | 8-2/m=0 | | (a−1^)2=8a−23 | | 4.72x+33.04=66.08 | | 9k=-39+12 | | 970431=1.86x10^5 | | 2x+50=156 | | 11+7/14=1-3/7x | | s-15.00=15.77 | | 277=77-y | | 3(x-4)=-4x30 | | .6x-7=4x+11 | | 3q-12=3-2q | | 2x-3=-4x+2 | | 6x+5=4x-18 | | 192+12x=24x | | 0.3x=69 | | 192+12x=192+24x | | 60=2×3.14×r | | 12x=192+24x | | 2x1=75 | | 3x2-25=0 | | d-80/2=10 | | 7z−z=54 | | 7t+183=540 |

Equations solver categories