1200=x*(150-x)

Simple and best practice solution for 1200=x*(150-x) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1200=x*(150-x) equation:



1200=x(150-x)
We move all terms to the left:
1200-(x(150-x))=0
We add all the numbers together, and all the variables
-(x(-1x+150))+1200=0
We calculate terms in parentheses: -(x(-1x+150)), so:
x(-1x+150)
We multiply parentheses
-1x^2+150x
Back to the equation:
-(-1x^2+150x)
We get rid of parentheses
1x^2-150x+1200=0
We add all the numbers together, and all the variables
x^2-150x+1200=0
a = 1; b = -150; c = +1200;
Δ = b2-4ac
Δ = -1502-4·1·1200
Δ = 17700
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{17700}=\sqrt{100*177}=\sqrt{100}*\sqrt{177}=10\sqrt{177}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-150)-10\sqrt{177}}{2*1}=\frac{150-10\sqrt{177}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-150)+10\sqrt{177}}{2*1}=\frac{150+10\sqrt{177}}{2} $

See similar equations:

| 17500=x*(600-5x) | | x2−200x+9600=0 | | X^2-150x+1200=0 | | 0=x2−200x+9600 | | 5x^2+20=-40 | | 0.75x+1=-1 | | 1/6=5/2+p | | ^2-120x+3500=0 | | 0.8/y=1.5 | | Y=9x-37 | | 7=9-v | | x^2-3x+240=0 | | x2-3x+240=0 | | x2+3x-240=0 | | 10e/5=80/4 | | 25b+12=124-12 | | 5x+x/2=24 | | 1+8+2b=b-9 | | x^2-190000x-9000000000=0 | | 100+x+30=150 | | 22a=110/5 | | 125m-75m+38,000=40,400-150m= | | d^2=-4d | | 125m-75m+38,000=40,400-150m | | 12x+56=36 | | 20m-0.15=30m-0.10 | | 72/x=64/8 | | 1=z-3 | | x^2-190000-9000000000=0 | | 26+17d=-42 | | 2/3(2t-7)+2/3t=95/3-t | | -3+c/2=-3 |

Equations solver categories