120=(6w+2w)(w)

Simple and best practice solution for 120=(6w+2w)(w) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 120=(6w+2w)(w) equation:



120=(6w+2w)(w)
We move all terms to the left:
120-((6w+2w)(w))=0
We add all the numbers together, and all the variables
-((+8w)w)+120=0
We calculate terms in parentheses: -((+8w)w), so:
(+8w)w
We multiply parentheses
8w^2
Back to the equation:
-(8w^2)
a = -8; b = 0; c = +120;
Δ = b2-4ac
Δ = 02-4·(-8)·120
Δ = 3840
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{3840}=\sqrt{256*15}=\sqrt{256}*\sqrt{15}=16\sqrt{15}$
$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-16\sqrt{15}}{2*-8}=\frac{0-16\sqrt{15}}{-16} =-\frac{16\sqrt{15}}{-16} =-\frac{\sqrt{15}}{-1} $
$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+16\sqrt{15}}{2*-8}=\frac{0+16\sqrt{15}}{-16} =\frac{16\sqrt{15}}{-16} =\frac{\sqrt{15}}{-1} $

See similar equations:

| 75+x=2x+70 | | x-3x=13 | | 120=6w+2w^2 | | 15^(x-10)=7^(3x) | | 1+6x=-11+3 | | -y+y=12 | | -6x-3x=24 | | (55-x)(40-x)=0 | | 5(x+11)=2(2x-5) | | 3(5x)-2=8x-2 | | -9-w=15 | | 11f+11-4f-3=f+20 | | 2(4x+2)=-3x-3 | | x/2+3x/5=11/10 | | 4d+2=7 | | 2(.5)-y=7 | | w+4/5=(6)1/3 | | x-2/4+x/2=10 | | x/4-7x/12=2 | | 2(x+3)+2(x+1)=6(x+1)-1 | | w+4/5=61/3 | | (5.00)(548–x)+(2.50)x=2460 | | (5)(548–x)+(2.50)x=2460 | | (5)(548–x)+(2.50)x=$2460 | | 4(-x-1)+5x-2=-2-x | | 8y-8y=-4 | | 134/9=x^2+x | | (5.00)(548–x)+(2.50)C=2460 | | 9x2-54x-81=0 | | -6y+6y=-9 | | 16x2+16x+3=0 | | 7a/21=0 |

Equations solver categories