120=t(140+t)

Simple and best practice solution for 120=t(140+t) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 120=t(140+t) equation:



120=t(140+t)
We move all terms to the left:
120-(t(140+t))=0
We add all the numbers together, and all the variables
-(t(t+140))+120=0
We calculate terms in parentheses: -(t(t+140)), so:
t(t+140)
We multiply parentheses
t^2+140t
Back to the equation:
-(t^2+140t)
We get rid of parentheses
-t^2-140t+120=0
We add all the numbers together, and all the variables
-1t^2-140t+120=0
a = -1; b = -140; c = +120;
Δ = b2-4ac
Δ = -1402-4·(-1)·120
Δ = 20080
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{20080}=\sqrt{16*1255}=\sqrt{16}*\sqrt{1255}=4\sqrt{1255}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-140)-4\sqrt{1255}}{2*-1}=\frac{140-4\sqrt{1255}}{-2} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-140)+4\sqrt{1255}}{2*-1}=\frac{140+4\sqrt{1255}}{-2} $

See similar equations:

| 56x3=85 | | 6(6+x)=42 | | y+48y=0 | | 2/3(12x-3)=5x+10 | | -1(x-3)=10 | | 20+2x=56 | | 2-m=9 | | 120-5w=-1-6w | | 3x+10+49+106=180 | | -3(-6w+7)-3w=5(2-2)-6 | | 1=17x/72 | | 4-2m+4m+1=0 | | 3.8x-4=2.4x+3 | | 8x-17=2x+28 | | 5(6x+6)=3(3x-8) | | -2(4+x)=-14 | | 2x+20+46+72=180 | | m4+3=8 | | 71x+3=85 | | 12s-10s=9 | | 24/6=4/x | | 100x+6=Y | | 6x+9=18x-3x+18 | | 3/7(c+4)=3 | | 3(4K+6)=34k-6 | | 5x+18+81+4x=180 | | -7(v+5)=-2v-15 | | 2(4-y)=-12 | | -8=a/4-6 | | X+0.7x=1-0.2x | | 9g−–8=53 | | 11=7-5m+3m |

Equations solver categories