121/4x+6=5x-51

Simple and best practice solution for 121/4x+6=5x-51 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 121/4x+6=5x-51 equation:



121/4x+6=5x-51
We move all terms to the left:
121/4x+6-(5x-51)=0
Domain of the equation: 4x!=0
x!=0/4
x!=0
x∈R
We get rid of parentheses
121/4x-5x+51+6=0
We multiply all the terms by the denominator
-5x*4x+51*4x+6*4x+121=0
Wy multiply elements
-20x^2+204x+24x+121=0
We add all the numbers together, and all the variables
-20x^2+228x+121=0
a = -20; b = 228; c = +121;
Δ = b2-4ac
Δ = 2282-4·(-20)·121
Δ = 61664
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{61664}=\sqrt{16*3854}=\sqrt{16}*\sqrt{3854}=4\sqrt{3854}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(228)-4\sqrt{3854}}{2*-20}=\frac{-228-4\sqrt{3854}}{-40} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(228)+4\sqrt{3854}}{2*-20}=\frac{-228+4\sqrt{3854}}{-40} $

See similar equations:

| 19x+16=4x | | 2x-13+-18+2x=17 | | 2(x+3)=5+x | | x^2-4x^2=336 | | 5c-2=-9.5 | | 19=(1,8x/58) | | 24+2(90-x)+x=180 | | 9+6x=-6x+21 | | 4(2x-5)=-(x+2) | | 3n+3n=6n² | | 3/20=122/b | | 9x-30=4x-5 | | -5x+10=-6x+19 | | -1/2(x+2.4)=7.5x+2 | | x.x=180 | | x-2+2(5x+1)=59 | | 8x-41=4x+5 | | 1x+1x+7.2x=100 | | 2(x-14)+x-5=3(x-11) | | 9−9d=–10d | | 3^(2x+1)+3^(x+2)=324 | | 2(3w+9)/5=-8 | | 42-12y=0 | | 8x-11=3x-4 | | 2x–9=19 | | j+1-2j-1+3j=1 | | X^2+18x+32=3 | | -10n+3(8+8n=-6(1n-4) | | 1/1.9=12/n | | X-21=12,x | | 3(95/4-t/2)+3t=84 | | 8x-5-4x=11 |

Equations solver categories