122/3x+41/6=51/2x

Simple and best practice solution for 122/3x+41/6=51/2x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 122/3x+41/6=51/2x equation:



122/3x+41/6=51/2x
We move all terms to the left:
122/3x+41/6-(51/2x)=0
Domain of the equation: 3x!=0
x!=0/3
x!=0
x∈R
Domain of the equation: 2x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
122/3x-(+51/2x)+41/6=0
We get rid of parentheses
122/3x-51/2x+41/6=0
We calculate fractions
492x^2/216x^2+8784x/216x^2+(-5508x)/216x^2=0
We multiply all the terms by the denominator
492x^2+8784x+(-5508x)=0
We get rid of parentheses
492x^2+8784x-5508x=0
We add all the numbers together, and all the variables
492x^2+3276x=0
a = 492; b = 3276; c = 0;
Δ = b2-4ac
Δ = 32762-4·492·0
Δ = 10732176
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{10732176}=3276$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3276)-3276}{2*492}=\frac{-6552}{984} =-6+27/41 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3276)+3276}{2*492}=\frac{0}{984} =0 $

See similar equations:

| 5x+13=-7x-19 | | 5x+13=−7x−19 | | 15r+8=11-20 | | .t/8=3.2 | | 1/4a-12=48 | | 16q-7=9 | | 2(4m-5)-6m=11)=33 | | -3+13=-2x+1 | | 0.5-(-10.5x)=+40.5= | | -1=2-a | | .21=0.75a | | 6.6x−12.2=7.6​ | | -2x-4=3(6) | | 8x-12=10-2x | | d–7=–17 | | (90^73((1+100000)^6))^12=x | | 8x−12=10−2x | | 40(15+0.25x)=45+0.35x | | 12w=1w | | 180=89+x | | –2(–17b–2)–12=–8 | | 9^x-8=14 | | 6z−41=55 | | d4+ 2=5 | | 3(20-x)=24 | | y3+ 3=7 | | 8+0.05x=0.1x | | -23=5(v-6)+2v | | 100*$7x=15.50 | | n÷4=4 | | 2w+4(w+8)=20 | | 12m+50=74 |

Equations solver categories