122=w(2)+35

Simple and best practice solution for 122=w(2)+35 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 122=w(2)+35 equation:



122=w(2)+35
We move all terms to the left:
122-(w(2)+35)=0
We add all the numbers together, and all the variables
-(+w^2+35)+122=0
We get rid of parentheses
-w^2-35+122=0
We add all the numbers together, and all the variables
-1w^2+87=0
a = -1; b = 0; c = +87;
Δ = b2-4ac
Δ = 02-4·(-1)·87
Δ = 348
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{348}=\sqrt{4*87}=\sqrt{4}*\sqrt{87}=2\sqrt{87}$
$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{87}}{2*-1}=\frac{0-2\sqrt{87}}{-2} =-\frac{2\sqrt{87}}{-2} =-\frac{\sqrt{87}}{-1} $
$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{87}}{2*-1}=\frac{0+2\sqrt{87}}{-2} =\frac{2\sqrt{87}}{-2} =\frac{\sqrt{87}}{-1} $

See similar equations:

| 19x+11x+90=180 | | (+20x^2-25x+12x-15)(x^2-19)=0 | | 1=(4n-1) | | 19x+11x+90=18 | | 50=(n+12)×2.5 | | (3x-6)/(5x+1)=0 | | t=-16t^+101t+10 | | -5(2+3h)=-20 | | (5x+3)(4x-5)(x^2-19)=0 | | 1=(3n+8) | | 25n-200=300 | | 271=-y+173 | | -35=8+4(r-2) | | 4=9x-5x^2 | | -y+158=97 | | 8-23-x=4x+6 | | X+5+(5+x)+3/10=500 | | |x+4|+5=14 | | 2(5m+4+1)=40 | | 1/2(x−60)=9+7x | | -4t+3=-13 | | X+5(5+x)+3/10=500 | | -3(t)=13t-2 | | 32-6f=9(5f-4) | | 0.7n=2.8 | | t=-16t^+t | | 4x-7=-20.2 | | X+x=51 | | H=125016t^2 | | 5x-17=-x+7=x | | -34=-4(3c+5) | | 1+3/x=28/x^2 |

Equations solver categories