125/6x+181/2=31/3x+28

Simple and best practice solution for 125/6x+181/2=31/3x+28 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 125/6x+181/2=31/3x+28 equation:



125/6x+181/2=31/3x+28
We move all terms to the left:
125/6x+181/2-(31/3x+28)=0
Domain of the equation: 6x!=0
x!=0/6
x!=0
x∈R
Domain of the equation: 3x+28)!=0
x∈R
We get rid of parentheses
125/6x-31/3x-28+181/2=0
We calculate fractions
9774x^2/72x^2+1500x/72x^2+(-744x)/72x^2-28=0
We multiply all the terms by the denominator
9774x^2+1500x+(-744x)-28*72x^2=0
Wy multiply elements
9774x^2-2016x^2+1500x+(-744x)=0
We get rid of parentheses
9774x^2-2016x^2+1500x-744x=0
We add all the numbers together, and all the variables
7758x^2+756x=0
a = 7758; b = 756; c = 0;
Δ = b2-4ac
Δ = 7562-4·7758·0
Δ = 571536
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{571536}=756$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(756)-756}{2*7758}=\frac{-1512}{15516} =-42/431 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(756)+756}{2*7758}=\frac{0}{15516} =0 $

See similar equations:

| M+(9x-36)=180 | | 44=k/6+39 | | 8x-105=137-3x | | 7.4x+3-9=6 | | 3.2x1.4=4.48 | | 7g=231 | | 6x+2x-8+10=4 | | 6j-2=-14 | | 2x-3x-4-3=-11 | | x-12/4=-16 | | =16.5x | | 11-4x-2x+9=12 | | x-12/4=-64 | | (8r+8)+4=+(8+4)=8r+ | | 6x-9x-11+2-3x=-2 | | -0=m | | 3.4+10=x* | | p/6+18=19 | | 6x=+43 | | 5(x+2)-3x=2x+5+4 | | (7x+6)+(9x-36)=360 | | -35=5(x-6) | | w-2.35=4.65 | | (x-1)^5=33 | | f-4.6=3.2 | | 5=r−7 | | 4988=-s | | b+8.7=14.5 | | h/12-1=-2 | | 4^x=532 | | 2n–8)(-2)=-24 | | -13(5)+(-7/8x)=76 |

Equations solver categories