If it's not what You are looking for type in the equation solver your own equation and let us solve it.
125/6x-14x+1/6x=-x
We move all terms to the left:
125/6x-14x+1/6x-(-x)=0
Domain of the equation: 6x!=0We add all the numbers together, and all the variables
x!=0/6
x!=0
x∈R
125/6x-14x+1/6x-(-1x)=0
We add all the numbers together, and all the variables
-14x+125/6x+1/6x-(-1x)=0
We get rid of parentheses
-14x+125/6x+1/6x+1x=0
We multiply all the terms by the denominator
-14x*6x+1x*6x+125+1=0
We add all the numbers together, and all the variables
-14x*6x+1x*6x+126=0
Wy multiply elements
-84x^2+6x^2+126=0
We add all the numbers together, and all the variables
-78x^2+126=0
a = -78; b = 0; c = +126;
Δ = b2-4ac
Δ = 02-4·(-78)·126
Δ = 39312
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{39312}=\sqrt{144*273}=\sqrt{144}*\sqrt{273}=12\sqrt{273}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-12\sqrt{273}}{2*-78}=\frac{0-12\sqrt{273}}{-156} =-\frac{12\sqrt{273}}{-156} =-\frac{\sqrt{273}}{-13} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+12\sqrt{273}}{2*-78}=\frac{0+12\sqrt{273}}{-156} =\frac{12\sqrt{273}}{-156} =\frac{\sqrt{273}}{-13} $
| 12v=64 | | 24k=504 | | 17=5y-8 | | 17x+4(3-5x)=0 | | 16-5a+2a-1=42-a | | 3/4b-2=10 | | -(-1.3)+y=3 | | 18=5y-8 | | 17-6(2x-9)=-(5x+8)-6 | | 5+10y-1=9y+19-2y | | -4k=4.2 | | -20=7v-6 | | a/3-7=12 | | 3x^2+2x+1=1 | | 1000=x1.5 | | 6(3x-5)=43 | | 12x+3=2x-12 | | 3.6=1.62w+24 | | 8+3/7v=9 | | 12-8z=52 | | x2+4-5x-6=22 | | A/3=r2 | | 2.5=d÷6.9 | | 9x+1-7x+1=8X+1-x+2 | | 2x+33+5x-15=180 | | 3x^2+2x1=0 | | 11/6=x+7/9 | | 12=-3x+2+7x | | s/9=4;s=36 | | x+98=174 | | 6×5/4=p | | 2y+4(5)=6 |