If it's not what You are looking for type in the equation solver your own equation and let us solve it.
125/6x=14x+1/6x=
We move all terms to the left:
125/6x-(14x+1/6x)=0
Domain of the equation: 6x!=0
x!=0/6
x!=0
x∈R
Domain of the equation: 6x)!=0We add all the numbers together, and all the variables
x!=0/1
x!=0
x∈R
125/6x-(+14x+1/6x)=0
We get rid of parentheses
125/6x-14x-1/6x=0
We multiply all the terms by the denominator
-14x*6x+125-1=0
We add all the numbers together, and all the variables
-14x*6x+124=0
Wy multiply elements
-84x^2+124=0
a = -84; b = 0; c = +124;
Δ = b2-4ac
Δ = 02-4·(-84)·124
Δ = 41664
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{41664}=\sqrt{64*651}=\sqrt{64}*\sqrt{651}=8\sqrt{651}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{651}}{2*-84}=\frac{0-8\sqrt{651}}{-168} =-\frac{8\sqrt{651}}{-168} =-\frac{\sqrt{651}}{-21} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{651}}{2*-84}=\frac{0+8\sqrt{651}}{-168} =\frac{8\sqrt{651}}{-168} =\frac{\sqrt{651}}{-21} $
| 16×3x=8 | | 2(x−4)=7−5(2x+1) | | 5(3x-4)=3(5x-2) | | 12+2x=30–(60+6x) | | 5x^2-4x-9=-2x-2 | | (12x)+(23x+5)=180 | | n+9/4=8 | | B=8k-9(4k+4) | | 8k-9=(4k+4) | | 5x^2-4x-9=-9 | | 8-x=5x+4 | | 5t2-20t+5=0 | | −a/0.5+3.9=−1.3 | | 15a+11=3(5a+13)-4 | | -4/5y=1/2y=-4/5 | | -4/5y=1/2y-4/5 | | 6w-12=4(w-8) | | (6x-11)^1/2=2x-7 | | C=2 | | 5×+2y=29.×-y=-4 | | 3+2y-4=2 | | 8(x-16)=32 | | 4.4-x=2x | | 0+2y-4=2 | | -9-3w÷9=9 | | 1.2(2.5)^3x=5(4.2)^x | | 11+3n=21 | | 3x-⁷=81 | | 30-x=19 | | 4x+3+3x+2+8x-40=180 | | 2x+22+4x+1+3x+18=180 | | 3x^2+2x=30 |