1250=80t+1/2(4)t

Simple and best practice solution for 1250=80t+1/2(4)t equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1250=80t+1/2(4)t equation:



1250=80t+1/2(4)t
We move all terms to the left:
1250-(80t+1/2(4)t)=0
Domain of the equation: 24t)!=0
t!=0/1
t!=0
t∈R
We add all the numbers together, and all the variables
-(+80t+1/24t)+1250=0
We get rid of parentheses
-80t-1/24t+1250=0
We multiply all the terms by the denominator
-80t*24t+1250*24t-1=0
Wy multiply elements
-1920t^2+30000t-1=0
a = -1920; b = 30000; c = -1;
Δ = b2-4ac
Δ = 300002-4·(-1920)·(-1)
Δ = 899992320
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{899992320}=\sqrt{256*3515595}=\sqrt{256}*\sqrt{3515595}=16\sqrt{3515595}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(30000)-16\sqrt{3515595}}{2*-1920}=\frac{-30000-16\sqrt{3515595}}{-3840} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(30000)+16\sqrt{3515595}}{2*-1920}=\frac{-30000+16\sqrt{3515595}}{-3840} $

See similar equations:

| 2(8x-16)=3x+20 | | 6(2+6x)=156 | | 80t+2t^2=1250 | | -1/2w+3=-1/3w+7 | | -3(3x-3)=-99 | | 7(x2-8)=-70 | | x(4x+15)+4=0 | | 1/2x=1/14+6/7 | | 5x-8=8x-3 | | 6(3x+4)=-102 | | 3-1x=14 | | 21+8s=50-11s | | 5(5-7)=2(n+14) | | 2(3n+5)=25 | | x+3-(x-1)=x-2-(-x) | | -3x+4=-0.5x+4 | | X+109+x+89=360 | | 5(2x-3)-(4x-9)=0 | | 0.5x+23.5=38.5 | | -3x+4=-1/2x+4 | | 13x-6=11x+12 | | 7(2x-8)=-70 | | 9(2x+5)+5=6+3x | | -x-3-3=-x-2-4 | | -135=-8(p+8)-7 | | 5n=3n-n+5=26 | | 1x-20+137=180 | | 3x+8+3x=5=(x+3)-7 | | 14.6-x÷2.8=7.1 | | -259=5+6(-8-6n) | | 2(6-7m)+2=-98 | | -3(4-x)+2(x+5)=9x+22 |

Equations solver categories