If it's not what You are looking for type in the equation solver your own equation and let us solve it.
125x^2-5=0
a = 125; b = 0; c = -5;
Δ = b2-4ac
Δ = 02-4·125·(-5)
Δ = 2500
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2500}=50$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-50}{2*125}=\frac{-50}{250} =-1/5 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+50}{2*125}=\frac{50}{250} =1/5 $
| -49=23x | | 10-2s=16 | | 3(x+2)-5=25 | | 5(3x+1)=-3(3x-4) | | w-91+91=6+84 | | 4y-10y+2=-11 | | x2-9x+3=0 | | 3/8w=-15 | | 4.4x=3.4x+8 | | 1x+7=5x-1 | | 7r-10=4r+20 | | 8k+7=20k-53 | | 3(x+9)+5x=27 | | 18-2m=14;2 | | 25=4x-16 | | c/9-8=(-5) | | 6(y-6)=4y-46 | | c/9-8=9-50 | | 2x-5x+67=0 | | 65+11x-17+5=180 | | 2x-15+3x=35 | | 22x=8x+6 | | 3-m/5=16 | | 3b-(-16)=97 | | 5x+3=4x+16 | | 4x-20=0x+3+6x | | 13y+49=166 | | 9x+0.8=72.8 | | 4x-20=-6+3+6x | | 4x-20=-4+3+6x | | 35=-3d+8 | | 65+5+11x+17=180 |