126=(4x+1)(x+4)

Simple and best practice solution for 126=(4x+1)(x+4) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 126=(4x+1)(x+4) equation:



126=(4x+1)(x+4)
We move all terms to the left:
126-((4x+1)(x+4))=0
We multiply parentheses ..
-((+4x^2+16x+x+4))+126=0
We calculate terms in parentheses: -((+4x^2+16x+x+4)), so:
(+4x^2+16x+x+4)
We get rid of parentheses
4x^2+16x+x+4
We add all the numbers together, and all the variables
4x^2+17x+4
Back to the equation:
-(4x^2+17x+4)
We get rid of parentheses
-4x^2-17x-4+126=0
We add all the numbers together, and all the variables
-4x^2-17x+122=0
a = -4; b = -17; c = +122;
Δ = b2-4ac
Δ = -172-4·(-4)·122
Δ = 2241
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2241}=\sqrt{9*249}=\sqrt{9}*\sqrt{249}=3\sqrt{249}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-17)-3\sqrt{249}}{2*-4}=\frac{17-3\sqrt{249}}{-8} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-17)+3\sqrt{249}}{2*-4}=\frac{17+3\sqrt{249}}{-8} $

See similar equations:

| 4√3x^2+5x-2√3=0 | | 3.6(7.5-x)+3.6(7.5+x)=(7.5-x)(7.5+x) | |  5x-2x=7x+2x-24  | | 8x-9=17+6x | | 5-(b-1)=3 | | 10d-12d=12 | | -15v+12v+-6=3 | | 1.5(2.5)+1.5(-2.5)=(1.5+1.5)v | | 17t-16t=9 | | 6^x-2=82 | | 4(4x+11)=19 | | 5^(x+6)=125 | | 15=100×3b | | 4x-7(2-3)=3x+6 | | 3w^2-w=234 | | k=2.8 | | -3p+4=7p-3 | | 53-x=11 | | 5/6x+2=4/5x-2 | | -4b-8=-6(6+3b) | | 7+6(m-5)=42 | | 3c-1238​ c−2=32​ c−12 | | (x+6)(x)=1 | | (w^2)-w-12=0 | | 17n-10-16n=7 | | 0.75(8b+40-1=4b+14 | | 36-(10n+40)=6 | | -t+4=0 | | -1=1.2x+10 | | m=-3(5,7) | | 6x^2+30x+9=0 | | -4=0-0.75x |

Equations solver categories