If it's not what You are looking for type in the equation solver your own equation and let us solve it.
126=8x^2
We move all terms to the left:
126-(8x^2)=0
a = -8; b = 0; c = +126;
Δ = b2-4ac
Δ = 02-4·(-8)·126
Δ = 4032
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4032}=\sqrt{576*7}=\sqrt{576}*\sqrt{7}=24\sqrt{7}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-24\sqrt{7}}{2*-8}=\frac{0-24\sqrt{7}}{-16} =-\frac{24\sqrt{7}}{-16} =-\frac{3\sqrt{7}}{-2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+24\sqrt{7}}{2*-8}=\frac{0+24\sqrt{7}}{-16} =\frac{24\sqrt{7}}{-16} =\frac{3\sqrt{7}}{-2} $
| 2x=3 | | -5a-22=8(7+a) | | 2c=596 | | f−6.7=11.86 | | 3(6x+3)=-153 | | (17x-2)=66 | | 198=22q | | x−6.7=11.86 | | 154=11c | | 4r=884 | | 13-4s=-7 | | 40-n=-4(n-5)-1 | | 765=17y | | 5^{2x}=29 | | X=-8y=12 | | X+24=4x-3 | | t+4=-6. | | r/4+7=12 | | 13−4s=–7 | | 2(v+3)-4=6 | | (2x-5)(3x=5)=0 | | 3j+8=5 | | 15x-13=137 | | 8/5m=28 | | (7+8)=2(t+1)+2 | | -7(2p+6)-6p=-4(5p+6) | | 3r—1=19 | | 2(4)=1/2(5)+c | | 2−2m=8 | | 3n+3=-5(n-1)+6 | | 1.2(k+2.1)=5.4 | | 8^2x+5=0.25 |